A141586 Strongly refactorable numbers: numbers n such that if n is divisible by d, it is divisible by the number of divisors of d.
1, 2, 12, 24, 36, 72, 240, 480, 720, 1440, 3360, 4320, 5280, 6240, 6720, 8160, 9120, 10080, 11040, 13440, 13920, 14880, 15840, 17760, 18720, 19680, 20160, 20640, 21600, 22560, 24480, 25440, 27360, 28320, 29280, 32160, 33120, 34080
Offset: 1
Keywords
Examples
72 qualifies because its divisors are 1,2,3,4,6,8,9,12,18,24,36,72, which have 1,2,2,3,4,4,3,6,6,8,9,12 divisors respectively and all of those numbers are divisors of 72.
References
- Dmitriy Kunisky, German Manoim and N. J. A. Sloane, On strongly refactorable numbers, in preparation.
Links
- German Manoim and N. J. A. Sloane, Sep 09 2008, Table of n, a(n) for n = 1..240937 [a large file]
Crossrefs
Programs
-
Maple
isA141586 := proc(n) local dvs,d ; dvs := numtheory[divisors](n) ; for d in dvs do if not numtheory[tau](d) in dvs then RETURN(false) : fi; od: RETURN(true) ; end: for n from 1 to 100000 do if isA141586(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Aug 26 2008 ## A100549: if n = prod_p p^e_p, then pp = largest prime <= 1 + max e_p with(numtheory): pp := proc(n) local f,m; option remember; if (n = 1) then return 1; end if; m := 1: for f in op(2..-1,ifactors(n)) do if (f[2] > m) then m := f[2]: end if; end do; prevprime(m+2); end proc; isA141586 := proc(n) local ff,f,g,p,i; global pp; ff := op(2..-1,ifactors(n)); for f in ff do p := f[1]; if (add(floor(log(1+g[2])/log(p)),g in ff) > f[2]) then return false; end if; end do; for i from 1 to pi(pp(n)) do p := ithprime(i); if (n mod p <> 0) then if (add(floor(log(1+g[2])/log(p)),g in ff) > 0) then return false; end if; end if; end do; return true; end proc; # David Applegate and N. J. A. Sloane, Sep 15 2008
-
Mathematica
l = {}; For[n = 1, n < 100000, n++, b = DivisorSigma[0, Divisors[n]]; If[Length[Select[b, Mod[n, # ] > 0 &]] == 0, AppendTo[l, n]]]; l (* Stefan Steinerberger, Aug 25 2008 *) sfnQ[n_]:=AllTrue[DivisorSigma[0,Divisors[n]],Mod[n,#]==0&]; Select[ Range[ 35000],sfnQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 27 2019 *)
-
PARI
is_A141586(n)={ bittest(n,0) & return(n==1); fordiv(n,d,n % numdiv(d) & return);1 } \\ M. F. Hasler, Dec 05 2010
-
Sage
is_A141586 = lambda n: all(number_of_divisors(d).divides(n) for d in divisors(n)) # D. S. McNeil, Dec 05 2010
Extensions
More terms from German Manoim (gerrymanoim(AT)gmail.com), Aug 27 2008
Comments