cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141586 Strongly refactorable numbers: numbers n such that if n is divisible by d, it is divisible by the number of divisors of d.

Original entry on oeis.org

1, 2, 12, 24, 36, 72, 240, 480, 720, 1440, 3360, 4320, 5280, 6240, 6720, 8160, 9120, 10080, 11040, 13440, 13920, 14880, 15840, 17760, 18720, 19680, 20160, 20640, 21600, 22560, 24480, 25440, 27360, 28320, 29280, 32160, 33120, 34080
Offset: 1

Views

Author

J. Lowell, Aug 19 2008

Keywords

Comments

Let n = Product_{p} p ^ e_p be the prime factorization of n and let M = max{e_p + 1 }. Then n is in the sequence iff for all primes q in the range 2 <= q <= M we have e_q >= Sum_{r} floor( log_q (e_r + 1) ). - N. J. A. Sloane, Sep 01 2008
All terms > 1 are even. A subsequence of A033950. - N. J. A. Sloane, Aug 27 2008
Contains 480*p for all primes p > 5 (see A109802). - N. J. A. Sloane, Aug 27 2008

Examples

			72 qualifies because its divisors are 1,2,3,4,6,8,9,12,18,24,36,72, which have 1,2,2,3,4,4,3,6,6,8,9,12 divisors respectively and all of those numbers are divisors of 72.
		

References

  • Dmitriy Kunisky, German Manoim and N. J. A. Sloane, On strongly refactorable numbers, in preparation.

Crossrefs

Programs

  • Maple
    isA141586 := proc(n) local dvs,d ; dvs := numtheory[divisors](n) ; for d in dvs do if not numtheory[tau](d) in dvs then RETURN(false) : fi; od: RETURN(true) ; end: for n from 1 to 100000 do if isA141586(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Aug 26 2008
    ## A100549: if n = prod_p p^e_p, then pp = largest prime <= 1 + max e_p
    with(numtheory):
    pp := proc(n) local f,m; option remember; if (n = 1) then return 1; end if; m := 1: for f in op(2..-1,ifactors(n)) do if (f[2] > m) then m := f[2]: end if; end do; prevprime(m+2); end proc;
    isA141586 := proc(n) local ff,f,g,p,i; global pp;
    ff := op(2..-1,ifactors(n));
    for f in ff do
    p := f[1];
    if (add(floor(log(1+g[2])/log(p)),g in ff) > f[2]) then
    return false;
    end if;
    end do;
    for i from 1 to pi(pp(n)) do
    p := ithprime(i);
    if (n mod p <> 0) then
    if (add(floor(log(1+g[2])/log(p)),g in ff) > 0) then
    return false;
    end if;
    end if;
    end do;
    return true;
    end proc; # David Applegate and N. J. A. Sloane, Sep 15 2008
  • Mathematica
    l = {}; For[n = 1, n < 100000, n++, b = DivisorSigma[0, Divisors[n]]; If[Length[Select[b, Mod[n, # ] > 0 &]] == 0, AppendTo[l, n]]]; l (* Stefan Steinerberger, Aug 25 2008 *)
    sfnQ[n_]:=AllTrue[DivisorSigma[0,Divisors[n]],Mod[n,#]==0&]; Select[ Range[ 35000],sfnQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 27 2019 *)
  • PARI
    is_A141586(n)={ bittest(n,0) & return(n==1); fordiv(n,d,n % numdiv(d) & return);1 } \\ M. F. Hasler, Dec 05 2010
    
  • Sage
    is_A141586 = lambda n: all(number_of_divisors(d).divides(n) for d in divisors(n)) # D. S. McNeil, Dec 05 2010

Extensions

More terms from German Manoim (gerrymanoim(AT)gmail.com), Aug 27 2008