cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A142979 a(1) = 1, a(2) = 3, a(n+2) = 3*a(n+1) + (n+1)^2*a(n).

Original entry on oeis.org

1, 3, 13, 66, 406, 2868, 23220, 210192, 2116656, 23375520, 281792160, 3673814400, 51599514240, 775673176320, 12440524320000, 211848037632000, 3820318338816000, 72685037892096000, 1455838255452672000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 1 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of Mercator's series for the constant log(2). For other cases see A024167 (m = 0), A142980 (m = 2), A142981 (m = 3) and A142982 (m = 4).
The solution to the general recurrence may be expressed as a sum: a(n) = n!*p_m(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p_m(k-1)*p_m(k)), where p_m(x) = Sum_{k = 0..m} 2^k*C(m,k)*C(x,k) = Sum_{k = 0..m} C(m,k)*C(x+k,m), is the Ehrhart polynomial of the m-dimensional cross polytope (the hyperoctahedron).
The first few values are p_0(x) = 1, p_1(x) = 2*x + 1, p_2(x) = 2*x^2 + 2*x + 1 and p_3(x) = (4*x^3 + 6*x^2 + 8*x + 3)/3.
The sequence {p_m(k)},k>=0 is the crystal ball sequence for the product lattice A_1 x... x A_1 (m copies). The table of values [p_m(k)]m,k>=0 is the array of Delannoy numbers A008288.
The polynomial p_m(x) is the unique polynomial solution of the difference equation (x + 1)*f(x+1) - x*f(x-1) = (2*m + 1)*f(x), normalized so that f(0) = 1. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane, that is, the polynomials p_m(x-1), m = 1,2,3,..., satisfy a Riemann hypothesis [BUMP et al., Theorems 4 and 6]. The o.g.f. for the p_m(x) is (1 + t)^x/(1 - t)^(x+1) = 1 + (2*x + 1)*t + (2*x^2 + 2*x + 1)*t^2 + ....
The general recurrence in the first paragraph above also has a second solution b(n) = n!*p_m(n) with initial conditions b(1) = 2*m + 1, b(2) = (2*m + 1)^2 + 1.
Hence the behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(k*p_m(k-1)*p_m(k)) = 1/((2*m + 1) + 1^2/((2*m + 1) + 2^2/((2*m + 1) + 3^2/((2*m + 1) + ... + n^2/((2*m + 1) + ...))))) = (-1)^m * (log(2) - (1 - 1/2 + 1/3 - ... + (-1)^(m+1)/m)), where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 29]).
For other sequences defined by similar recurrences and related to log(2) see A142983 and A142988. See also A142992 for the connection between log(2) and the C_n lattices. For corresponding results for the constants e, zeta(2) and zeta(3) see A000522, A142995 and A143003 respectively.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Maple
    p := n -> 2*n+1: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20)
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==3,a[n+2]==3a[n+1]+(n+1)^2 a[n]},a,{n,20}] (* Harvey P. Dale, May 20 2012 *)

Formula

a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = 2*n + 1.
Recurrence: a(1) = 1, a(2) = 3, a(n+2) = 3*a(n+1) + (n + 1)^2*a(n).
The sequence b(n):= n!*p(n) satisfies the same recurrence with b(1) = 3, b(2) = 10.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(3 + 1^2/(3 + 2^2/(3 + 3^2/(3 + ... + (n-1)^2/3)))), for n >= 2.
Limit_{n -> oo} a(n)/b(n) = 1/(3 + 1^2/(3 + 2^2/(3 + 3^2/(3 + ... + (n-1)^2/(3 + ...))))) = Sum_{k >= 1} (-1)^(k+1)/(k*(4k^2 - 1)) = 1 - log(2).
Thus a(n) ~ c*n*n! as n -> oo, where c = 2*(1 - log(2)).
From Peter Bala, Dec 09 2024: (Start)
E.g.f.: A(x) = (2*x - (1 + x)*log(1 + x))/(1 - x)^2 satisfies the differential equation 1 + (x + 3)*A(x) + (x^2 - 1)*A'(x) = 0 with A(0) = 0.
Sum_{k = 1..n} Stirling_2(n, k) * a(k) = A317057(n+1). (End)

A142983 a(1) = 1, a(2) = 2, a(n+2) = 2*a(n+1) + (n + 1)*(n + 2)*a(n).

Original entry on oeis.org

1, 2, 10, 44, 288, 1896, 15888, 137952, 1419840, 15255360, 186693120, 2387093760, 33898314240, 502247692800, 8123141376000, 136785729024000, 2483065912320000, 46822564905984000, 942853671825408000, 19678282007924736000, 435355106182520832000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 1 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n + 1)*(n + 2)*a(n) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series 1/2 + 1/2*Sum_{k > 1} (-1)^(k+1)/(k*(k + 1)) = log(2). For other cases see A142984 (m = 2), A142985 (m = 3), A142986 (m = 4) and A142987 (m = 5).
The solution to the general recurrence may be expressed as a sum: a(n) = n!*p_m(n+1)*Sum_{k = 1..n} (-1)^(k+1)/(p_m(k)*p_m(k+1)), where p_m(x) = Sum_{k = 1..m} 2^(k-1)*C(m-1,k-1)*C(x,k) is the polynomial that gives the regular polytope numbers for the m-dimensional cross polytope as defined by [Kim] (see A142978). The first few values are p_1(x) = x, p_2(x) = x^2, p_3(x) = (2*x^3 + x)/3 and p_4(x) = (x^4 + 2*x^2)/3.
The polynomial p_m(x) is the unique polynomial solution of the difference equation x*(f(x+1) - f(x-1)) = 2*m*f(x), normalized so that f(1) = 1.
The o.g.f. for the p_m(x) is 1/2*((1 + t)/(1 - t))^x = 1/2 + x*t + x^2*t^2 + (2*x^3 + x)/3*t^3 + .... Thus p_m(x) is, apart from a constant factor, the Meixner polynomial of the first kind M_m(x;b,c) at b = 0, c = -1, also known as a Mittag-Leffler polynomial.
The general recurrence in the first paragraph above has a second solution b(n) = n!*p_m(n+1) with b(1) = 2*m, b(2) = m^2 + 2. Hence the behavior of a(n) for large n is given by Limit_{n-> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(p_m(k)*p_m(k+1)) = 1/((2*m) + 1*2/((2*m) + 2*3/((2*m) + 3*4/((2*m) + ... + n*(n + 1)/((2*m) + ...))))) = 1 + (-1)^(m+1) * (2*m)*(log(2) - (1 - 1/2 + 1/3 - ... + (-1)^(m+1)/m)), where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]).
See A142979, A142988 and A142992 for similar results. For corresponding results for Napier's constant e, the constant zeta(2) and Apery's constant zeta(3) refer to A000522, A142995 and A143003, respectively.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Haskell
    a142983 n = a142983_list !! (n-1)
    a142983_list = 1 : 2 : zipWith (+)
                           (map (* 2) $ tail a142983_list)
                           (zipWith (*) (drop 2 a002378_list) a142983_list)
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    a := n -> (n+1)!*sum ((-1)^(k+1)/(k*(k+1)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    Rest[CoefficientList[Series[(-x+2*Log[x+1])/(x-1)^2,{x,0,20}],x]*Range[0,20]!] (* Vaclav Kotesovec, Oct 21 2012 *)

Formula

a(n) = n!*p(n+1)*Sum_{k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = n.
Recurrence: a(1) = 1, a(2) = 2, a(n+2) = 2*a(n+1) + (n + 1)*(n + 2)*a(n).
The sequence b(n) := n!*p(n+1) satisfies the same recurrence with b(1) = 2 and b(2) = 6.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(2 + 1*2/(2 + 2*3/(2 + 3*4/(2 + ... + (n - 1)*n/2)))), for n >= 2.
The behavior of a(n) for large n is given by Limit_{n -> oo} a(n)/b(n) = 1/(2 + 1*2/(2 + 2*3/(2 + 3*4/(2 + ... + n*(n+1)/(2 + ...))))) = Sum_{k >= 1} (-1)^(k+1)/(k*(k + 1)) = 2*log(2) - 1.
E.g.f.: (2*log(x+1)-x)/(x-1)^2. - Vaclav Kotesovec, Oct 21 2012

A142989 a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1)+(n+1)*(n+3)*a(n).

Original entry on oeis.org

1, 5, 33, 240, 1992, 18360, 187416, 2093760, 25462080, 334592640, 4728412800, 71488811520, 1151817408000, 19699405286400, 356504125824000, 6805868977152000, 136702533123072000, 2881808345235456000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 1 of the general recurrence a(1) = 1, a(2) = 2*m+3, a(n+2) = (2*m+3)*a(n+1)+(n+1)*(n+3)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). For remarks on the general case see A142988 (m=0). For other cases see A142990 (m=2) and A142991 (m=3).

Crossrefs

Programs

  • Maple
    p := n -> (2*n-1)/3: a := n -> (n+2)!*p(n+2)*sum ((-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==5,a[n]==5a[n-1]+(n-1)(n+1)a[n-2]},a,{n,20}] (* Harvey P. Dale, Jun 17 2013 *)

Formula

a(n) = (n+2)!*p(n+2)*sum {k = 1..n} (-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), where p(n) = (2*n-1)/3. Recurrence: a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1)+(n+1)*(n+3)*a(n). The sequence b(n) := 1/2*(n+2)!*p(n+2) satisfies the same recurrence with b(1) = 5, b(2) = 28. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(5+1*3/(5+2*4/(5+3*5/(5+...+(n-1)*(n+1)/5)))), for n >=2. Lim n -> infinity a(n)/b(n) = 1/(5+1*3/(5+2*4/(5+3*5/(5+...+(n-1)*(n+1)/(5+...))))) = 2*sum {k = 1..inf} (-1)^(k+1)/ (k*(k+1)*(k+2)*p(k+1)*p(k+2)) = 17/2-12*log(2).

A142990 a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1)+(n+1)*(n+3)*a(n).

Original entry on oeis.org

1, 7, 57, 504, 4896, 51912, 598392, 7459200, 100085760, 1439061120, 22083719040, 360371773440, 6232667212800, 113901166310400, 2193425619840000, 44398776748032000, 942498015750144000, 20938290999865344000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 2 of the general recurrence a(1) = 1, a(2) = 2*m+3, a(n+2) = (2*m+3)*a(n+1)+(n+1)*(n+3)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). For remarks on the general case see A142988 (m=0). For other cases see A142989 (m=1) and A142991 (m=3).

Crossrefs

Programs

  • Maple
    p := n -> (n^2-n+1)/3: a := n -> (n+2)!*p(n+2)*sum ((-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), k = 1..n): seq(a(n), n = 1..20);

Formula

a(n) = (n+2)!*p(n+2)*sum {k = 1..n} (-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), where p(n) = (n^2-n+1)/3. Recurrence: a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1)+(n+1)*(n+3)*a(n). The sequence b(n) := 1/2*(n+2)!*p(n+2) satisfies the same recurrence with b(1) = 7, b(2) = 52. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(7+1*3/(7+2*4/(7+3*5/(7+...+(n-1)*(n+1)/7)))), for n >=2. Lim n -> infinity a(n)/b(n) = 1/(7+1*3/(7+2*4/(7+3*5/(7+...+(n-1)*(n+1)/(7+...))))) = 2*sum {k = 1..inf} (-1)^(k+1)/ (k*(k+1)*(k+2)*p(k+1)*p(k+2)) = 24*log(2)-33/2.

A142991 a(1) = 1, a(2) = 9, a(n+2) = 9*a(n+1)+(n+1)*(n+3)*a(n).

Original entry on oeis.org

1, 9, 89, 936, 10560, 127800, 1657080, 22965120, 339252480, 5326819200, 88651670400, 1559600179200, 28929882240000, 564490975104000, 11560712397696000, 247991610230784000, 5561409662613504000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 3 of the general recurrence a(1) = 1, a(2) = 2*m+3, a(n+2) = (2*m+3)*a(n+1) + (n+1)*(n+3)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). For remarks on the general case see A142988 (m=0). For other cases see A142989 (m=1) and A142990 (m=2).

Crossrefs

Programs

  • Maple
    p := n -> (2*n^3-3*n^2+7*n-3)/15: a := n -> (n+2)!*p(n+2)*sum ((-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==9,a[n+2]==9a[n+1]+(n+1)(n+3)a[n]},a,{n,20}] (* Harvey P. Dale, Jul 18 2020 *)

Formula

a(n) = (n+2)!*p(n+2)*sum {k = 1..n} (-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), where p(n) = (2*n^3-3*n^2+7*n-3)/15. Recurrence: a(1) = 1, a(2) = 9, a(n+2) = 9*a(n+1)+(n+1)*(n+3)*a(n). The sequence b(n) := 1/2*(n+2)!*p(n+2) satisfies the same recurrence with b(1) = 9, b(2) = 84. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(9+1*3/(9+2*4/(9+3*5/(9+...+(n-1)*(n+1)/9)))), for n >=2. Lim n -> infinity a(n)/b(n) = 1/(9+1*3/(9+2*4/(9+3*5/(9+...+(n-1)*(n+1)/(9+...))))) = 2*sum {k = 1..inf} (-1)^(k+1)/ (k*(k+1)*(k+2)*p(k+1)*p(k+2)) = 167/6 - 40*log(2).
Showing 1-5 of 5 results.