A185646
Square array A(n,m), n>=0, m>=0, read by antidiagonals, where column m is the expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))).
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, -1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 2, 3, 3, 1, 0, 1, 1, 1, 2, 3, 4, 5, 1, -1, 1, 1, 1, 2, 3, 5, 7, 6, 1, 0, 1, 1, 1, 2, 3, 5, 8, 11, 10, 1, 0, 1, 1, 1, 2, 3, 5, 9, 13, 17, 14, 1, 0, 1, 1, 1, 2, 3, 5, 9, 14, 22, 28, 21, 1, 0
Offset: 0
Square array A(n,m) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 2, 3, 3, 3, 3, 3, 3, ...
-1, 1, 3, 4, 5, 5, 5, 5, 5, ...
0, 1, 5, 7, 8, 9, 9, 9, 9, ...
0, 1, 6, 11, 13, 14, 15, 15, 15, ...
-1, 1, 10, 17, 22, 24, 25, 26, 26, ...
Columns m=0-10 give:
A143064,
A000012,
A227360,
A173173(n+1),
A227374,
A227375,
A228646,
A228644,
A185648,
A228645,
A185649.
-
nMax = 12; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A = Table[col[m][[1 ;; nMax + 1]], {m, 0, nMax}] // Transpose; a[n_ /; 0 <= n <= nMax, m_ /; 0 <= m <= nMax] := With[{n1 = n + 1, m1 = m + 1}, A[[n1, m1]]]; Table[a[n - m, m], {n, 0, nMax}, {m, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2016 *)
A228644
Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=7.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 9, 15, 26, 44, 76, 131, 225, 389, 670, 1156, 1994, 3439, 5934, 10236, 17661, 30470, 52569, 90699, 156483, 269985, 465811, 803677, 1386609, 2392357, 4127611, 7121498, 12286951, 21199078, 36575462, 63104849, 108876873, 187848862, 324101847
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Paul D. Hanna et al., Formula Needed for a Family of Continued Fractions and follow-up messages on the SeqFan list, Jul 28 2013
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,0,0,-1,-1,-3,-2,-1,0,2,2,3,3,1,0,0,-2,-1,-1,-1).
-
a:= n-> coeff(series(-(x^18 +x^17 +x^16 +2*x^15 +x^14 -2*x^11 -2*x^10 -2*x^9 -2*x^8 +x^5 +x^4 +x^3 +x^2-1) / ((x-1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)*(x^15 +x^14 +x^13 +2*x^12 -x^9 -2*x^8 -2*x^7 -x^6 +x^3 +x^2 +x-1)), x, n+1), x, n): seq(a(n), n=0..50);
-
nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A228644 = col[7][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)
A228645
Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=9.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 134, 232, 402, 695, 1205, 2086, 3613, 6259, 10841, 18780, 32531, 56354, 97621, 169111, 292954, 507488, 879136, 1522947, 2638242, 4570298, 7917253, 13715281, 23759370, 41159039, 71300984, 123516755, 213971647, 370669282
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Paul D. Hanna et al., Formula Needed for a Family of Continued Fractions and follow-up messages on the SeqFan list, Jul 28 2013
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 1, 0, 0, -1, -1, -2, -1, -3, -2, 0, 1, 3, 4, 4, 4, 4, 2, 0, -2, -3, -5, -4, -4, -3, -2, 0, 1, 1, 2, 2, 1, 1, 1).
-
a:= n-> coeff(series(-(x^30 +x^29 +x^28 +2*x^27 +2*x^26 +2*x^25 +x^24 +x^23 -x^22 -2*x^21 -2*x^20 -4*x^19 -4*x^18 -3*x^17 -2*x^16 -x^15 +2*x^13 +2*x^12 +3*x^11 +3*x^10 +x^9 +x^8 -x^5 -x^4 -x^3 -x^2+1) / ((x-1)*(x^2 +x+1)*(x^6 +x^3+1)*(x^26 +x^25 +x^24 +2*x^23 +2*x^22 +x^21 +x^20 -2*x^18 -2*x^17 -3*x^16 -3*x^15 -3*x^14 -x^13 -x^12 +x^11 +2*x^10 +2*x^9 +2*x^8 +x^7 +x^6 -x^3 -x^2 -x+1)), x, n+1), x, n): seq(a(n), n=0..50);
-
nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x] &; A228645 = col[9][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)
A228646
Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=6.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 9, 15, 25, 43, 74, 126, 217, 372, 638, 1096, 1881, 3230, 5546, 9524, 16353, 28083, 48224, 82811, 142208, 244204, 419360, 720144, 1236670, 2123670, 3646879, 6262611, 10754485, 18468174, 31714525, 54461873, 93524824, 160605817, 275800867
Offset: 0
-
nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A228646 = col[6][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)
A292420
Expansion of a q-series used by Ramanujan in his Lost Notebook.
Original entry on oeis.org
1, 2, 2, 3, 4, 4, 6, 8, 8, 11, 14, 16, 20, 24, 28, 34, 42, 48, 57, 68, 78, 94, 110, 126, 148, 172, 198, 230, 266, 304, 351, 404, 460, 526, 602, 684, 780, 888, 1004, 1140, 1290, 1456, 1646, 1856, 2088, 2351, 2644, 2964, 3326, 3728, 4168, 4664, 5212, 5812, 6484
Offset: 0
G.f. = 1 + 2*x + 2*x^2 + 3*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 8*x^8 + ...
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, page 1, 1st equation with a=-1.
-
N:= 200: # to get a(0)..a(N)
g143064:= add(x^k/mul(1+x^(2*j+1),j=0..k),k=0..2*N):
g000009:= mul(1+x^(2*k),k=1..N):
S:= series(g143064*g000009,x,2*N+2):
seq(coeff(S,x,2*j),j=0..N); # Robert Israel, Sep 17 2017
-
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ QPochhammer[ x^2] / QPochhammer[ x] Sum[ (-1)^k x^(3 k^2 + 2 k) (1 + x^(2 k + 1)), {k, 0, Sqrt[n / 3]}], {x, 0, n}]];
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A) * sum(k=0, sqrtint(n \ 3), (-1)^k * x^(3*k^2 + 2*k) * (1 + x^(2*k + 1)), A), n))};
A143065
Expansion of quotient of a Ramanujan false theta series by the theta series of triangular numbers in powers of x.
Original entry on oeis.org
1, 0, 0, -1, 1, -2, 2, -3, 4, -5, 6, -8, 11, -13, 16, -21, 27, -32, 39, -49, 61, -73, 87, -107, 131, -155, 184, -223, 267, -315, 372, -443, 526, -617, 722, -852, 1002, -1167, 1359, -1590, 1854, -2148, 2488, -2888, 3346, -3859, 4444, -5128, 5909, -6779, 7773
Offset: 0
G.f. = 1 - x^3 + x^4 - 2*x^5 + 2*x^6 - 3*x^7 + 4*x^8 - 5*x^9 + 6*x^10 + ...
- S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 13th equation.
-
a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {x}, {x^2}, x^2, x^3], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=0, n, if( issquare( 3*k + 1, &m), (-1)^(m \ 3) * x^k ), A) / sum(k=0, (sqrtint(8*n + 1) - 1) \ 2, x^((k^2 + k) / 2), A), n))};
-
{a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n+1) - 1, (-1)^k * x^(k^2 + 2*k) * prod(j=1, k, (1 - x^(2*j - 1)) / (1 - x^(2*j))^2, 1 + O(x^(n + 1 - k^2 - 2*k)))), n))};
A291316
Expansion of x/(1-x) + x^4*(1-x)/(1-x^3) + x^7*(1-x)*(1-x^3)/(1-x^5) + ... in powers of x.
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 3, -1, 1, 2, 0, 2, 1, 0, -1, 4, 2, -1, 2, -3, 4, 3, -1, 2, 0, 1, 1, 2, -2, 2, 5, 2, -3, 0, 1, -1, 6, 0, 4, -2, -1, 3, -1, 2, 0, 4, -2, 2, 4, -2, 1, 5, -2, -2, -2, 3, 6, 1, 3, -2, 4, -3, -1, -2, 3, 6, 2, 0, -4, 5, 1, 3, -1, 0, 0, 4, -1, -2, 4
Offset: 1
G.f. = x + x^2 + x^3 + 2*x^4 + x^6 + 3*x^7 - x^8 + x^9 + 2*x^10 + ...
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = sum(k=0, (n-1)\3, x^(3*k+1) * prod(i=1,k, 1 - x^(2*i-1), 1 + A) / (1 - x^(2*k+1)) ); polcoeff(A, n))};
A308745
Expansion of 1/(1 - x*(1 + x)/(1 - x^2*(1 + x^2)/(1 - x^3*(1 + x^3)/(1 - x^4*(1 + x^4)/(1 - ...))))), a continued fraction.
Original entry on oeis.org
1, 1, 2, 4, 8, 17, 36, 76, 161, 342, 726, 1542, 3276, 6960, 14788, 31422, 66767, 141872, 301464, 640584, 1361188, 2892417, 6146164, 13060136, 27751818, 58970564, 125308114, 266270558, 565805452, 1202295228, 2554789536, 5428741218, 11535678790, 24512475453
Offset: 0
-
nmax = 33; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^k (1 + x^k), 1, {k, 1, nmax}]), {x, 0, nmax}], x]
Showing 1-8 of 8 results.