cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A185646 Square array A(n,m), n>=0, m>=0, read by antidiagonals, where column m is the expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, -1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 2, 3, 3, 1, 0, 1, 1, 1, 2, 3, 4, 5, 1, -1, 1, 1, 1, 2, 3, 5, 7, 6, 1, 0, 1, 1, 1, 2, 3, 5, 8, 11, 10, 1, 0, 1, 1, 1, 2, 3, 5, 9, 13, 17, 14, 1, 0, 1, 1, 1, 2, 3, 5, 9, 14, 22, 28, 21, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2013

Keywords

Examples

			Square array A(n,m) begins:
   1,  1,  1,  1,  1,  1,  1,  1,  1, ...
   1,  1,  1,  1,  1,  1,  1,  1,  1, ...
   0,  1,  1,  1,  1,  1,  1,  1,  1, ...
   0,  1,  2,  2,  2,  2,  2,  2,  2, ...
   0,  1,  2,  3,  3,  3,  3,  3,  3, ...
  -1,  1,  3,  4,  5,  5,  5,  5,  5, ...
   0,  1,  5,  7,  8,  9,  9,  9,  9, ...
   0,  1,  6, 11, 13, 14, 15, 15, 15, ...
  -1,  1, 10, 17, 22, 24, 25, 26, 26, ...
		

Crossrefs

Diagonal gives: A005169.

Programs

  • Mathematica
    nMax = 12; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A = Table[col[m][[1 ;; nMax + 1]], {m, 0, nMax}] // Transpose; a[n_ /; 0 <= n <= nMax, m_ /; 0 <= m <= nMax] := With[{n1 = n + 1, m1 = m + 1}, A[[n1, m1]]]; Table[a[n - m, m], {n, 0, nMax}, {m, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2016 *)

A228644 Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=7.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 26, 44, 76, 131, 225, 389, 670, 1156, 1994, 3439, 5934, 10236, 17661, 30470, 52569, 90699, 156483, 269985, 465811, 803677, 1386609, 2392357, 4127611, 7121498, 12286951, 21199078, 36575462, 63104849, 108876873, 187848862, 324101847
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2013

Keywords

Crossrefs

Cf. A143064 (m=0), A227360 (m=2), A173173 (m=3), A227374 (m=4), A227375 (m=5), A228646(m=6), A228645 (m=9).
Column m=7 of A185646.

Programs

  • Maple
    a:= n-> coeff(series(-(x^18 +x^17 +x^16 +2*x^15 +x^14 -2*x^11 -2*x^10 -2*x^9 -2*x^8 +x^5 +x^4 +x^3 +x^2-1) / ((x-1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)*(x^15 +x^14 +x^13 +2*x^12 -x^9 -2*x^8 -2*x^7 -x^6 +x^3 +x^2 +x-1)), x, n+1), x, n): seq(a(n), n=0..50);
  • Mathematica
    nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A228644 = col[7][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)

Formula

G.f.: -(x^18 +x^17 +x^16 +2*x^15 +x^14 -2*x^11 -2*x^10 -2*x^9 -2*x^8 +x^5 +x^4 +x^3 +x^2-1) / ((x-1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)*(x^15 +x^14 +x^13 +2*x^12 -x^9 -2*x^8 -2*x^7 -x^6 +x^3 +x^2 +x-1)).

A228645 Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=9.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 134, 232, 402, 695, 1205, 2086, 3613, 6259, 10841, 18780, 32531, 56354, 97621, 169111, 292954, 507488, 879136, 1522947, 2638242, 4570298, 7917253, 13715281, 23759370, 41159039, 71300984, 123516755, 213971647, 370669282
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2013

Keywords

Crossrefs

Cf. A143064 (m=0), A227360 (m=2), A173173 (m=3), A227374 (m=4), A227375 (m=5), A228646 (m=6), A228644 (m=7).
Column m=9 of A185646.

Programs

  • Maple
    a:= n-> coeff(series(-(x^30 +x^29 +x^28 +2*x^27 +2*x^26 +2*x^25 +x^24 +x^23 -x^22 -2*x^21 -2*x^20 -4*x^19 -4*x^18 -3*x^17 -2*x^16 -x^15 +2*x^13 +2*x^12 +3*x^11 +3*x^10 +x^9 +x^8 -x^5 -x^4 -x^3 -x^2+1) / ((x-1)*(x^2 +x+1)*(x^6 +x^3+1)*(x^26 +x^25 +x^24 +2*x^23 +2*x^22 +x^21 +x^20 -2*x^18 -2*x^17 -3*x^16 -3*x^15 -3*x^14 -x^13 -x^12 +x^11 +2*x^10 +2*x^9 +2*x^8 +x^7 +x^6 -x^3 -x^2 -x+1)), x, n+1), x, n): seq(a(n), n=0..50);
  • Mathematica
    nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x] &; A228645 = col[9][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)

Formula

G.f.: -(x^30 +x^29 +x^28 +2*x^27 +2*x^26 +2*x^25 +x^24 +x^23 -x^22 -2*x^21 -2*x^20 -4*x^19 -4*x^18 -3*x^17 -2*x^16 -x^15 +2*x^13 +2*x^12 +3*x^11 +3*x^10 +x^9 +x^8 -x^5 -x^4 -x^3 -x^2+1) / ((x-1)*(x^2 +x+1)*(x^6 +x^3+1)*(x^26 +x^25 +x^24 +2*x^23 +2*x^22 +x^21 +x^20 -2*x^18 -2*x^17 -3*x^16 -3*x^15 -3*x^14 -x^13 -x^12 +x^11 +2*x^10 +2*x^9 +2*x^8 +x^7 +x^6 -x^3 -x^2 -x+1)).

A228646 Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=6.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 25, 43, 74, 126, 217, 372, 638, 1096, 1881, 3230, 5546, 9524, 16353, 28083, 48224, 82811, 142208, 244204, 419360, 720144, 1236670, 2123670, 3646879, 6262611, 10754485, 18468174, 31714525, 54461873, 93524824, 160605817, 275800867
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2013

Keywords

Crossrefs

Cf. A143064 (m=0), A227360 (m=2), A173173 (m=3), A227374 (m=4), A227375 (m=5), A228644 (m=7), A228645 (m=9).
Column m=6 of A185646.

Programs

  • Mathematica
    nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A228646 = col[6][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)

A292420 Expansion of a q-series used by Ramanujan in his Lost Notebook.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 6, 8, 8, 11, 14, 16, 20, 24, 28, 34, 42, 48, 57, 68, 78, 94, 110, 126, 148, 172, 198, 230, 266, 304, 351, 404, 460, 526, 602, 684, 780, 888, 1004, 1140, 1290, 1456, 1646, 1856, 2088, 2351, 2644, 2964, 3326, 3728, 4168, 4664, 5212, 5812, 6484
Offset: 0

Views

Author

Michael Somos, Sep 16 2017

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^2 + 3*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 8*x^8 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, page 1, 1st equation with a=-1.

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(0)..a(N)
    g143064:= add(x^k/mul(1+x^(2*j+1),j=0..k),k=0..2*N):
    g000009:= mul(1+x^(2*k),k=1..N):
    S:= series(g143064*g000009,x,2*N+2):
    seq(coeff(S,x,2*j),j=0..N); # Robert Israel, Sep 17 2017
  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ QPochhammer[ x^2] / QPochhammer[ x] Sum[ (-1)^k x^(3 k^2 + 2 k) (1 + x^(2 k + 1)), {k, 0, Sqrt[n / 3]}], {x, 0, n}]];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A) * sum(k=0, sqrtint(n \ 3), (-1)^k * x^(3*k^2 + 2*k) * (1 + x^(2*k + 1)), A), n))};

Formula

G.f. is the product of the g.f. of A000009 and A143064.
Given g.f. A(x), then A(x^2) = 1 / (1+x) + x / (1+x^3) + x^2 * (1+x^2) / ((1+x^3) * (1+x^5)) + x^3 * (1+x^2) / ((1+x^5) * (1+x^7)) + x^4 * (1+x^2) * (1+x^4) / ((1+x^5) * (1+x^7) * (1+x^9)) + ...

A143065 Expansion of quotient of a Ramanujan false theta series by the theta series of triangular numbers in powers of x.

Original entry on oeis.org

1, 0, 0, -1, 1, -2, 2, -3, 4, -5, 6, -8, 11, -13, 16, -21, 27, -32, 39, -49, 61, -73, 87, -107, 131, -155, 184, -223, 267, -315, 372, -443, 526, -617, 722, -852, 1002, -1167, 1359, -1590, 1854, -2148, 2488, -2888, 3346, -3859, 4444, -5128, 5909, -6779, 7773
Offset: 0

Views

Author

Michael Somos, Jul 21 2008

Keywords

Examples

			G.f. = 1 - x^3 + x^4 - 2*x^5 + 2*x^6 - 3*x^7 + 4*x^8 - 5*x^9 + 6*x^10 + ...
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 13th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {x}, {x^2}, x^2, x^3], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=0, n, if( issquare( 3*k + 1, &m), (-1)^(m \ 3) * x^k ), A) / sum(k=0, (sqrtint(8*n + 1) - 1) \ 2, x^((k^2 + k) / 2), A), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n+1) - 1, (-1)^k * x^(k^2 + 2*k) * prod(j=1, k, (1 - x^(2*j - 1)) / (1 - x^(2*j))^2, 1 + O(x^(n + 1 - k^2 - 2*k)))), n))};

Formula

G.f.: ( 1 + x - x^5 - x^8 + x^16 + x^21 - ... ) / ( 1 + x + x^3 + x^6 + x^10 + x^15 + ... ). [Ramanujan]
G.f.: 1 - x^3 * (1 - x) / (1 - x^2)^2 + x^8 * (1 - x) * (1 - x^3) / ((1 - x^2)^2 * (1 - x^4)^2) - ... [Ramanujan]
Convolution with A010054 is A143064.

A291316 Expansion of x/(1-x) + x^4*(1-x)/(1-x^3) + x^7*(1-x)*(1-x^3)/(1-x^5) + ... in powers of x.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, -1, 1, 2, 0, 2, 1, 0, -1, 4, 2, -1, 2, -3, 4, 3, -1, 2, 0, 1, 1, 2, -2, 2, 5, 2, -3, 0, 1, -1, 6, 0, 4, -2, -1, 3, -1, 2, 0, 4, -2, 2, 4, -2, 1, 5, -2, -2, -2, 3, 6, 1, 3, -2, 4, -3, -1, -2, 3, 6, 2, 0, -4, 5, 1, 3, -1, 0, 0, 4, -1, -2, 4
Offset: 1

Views

Author

Michael Somos, Aug 22 2017

Keywords

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + x^6 + 3*x^7 - x^8 + x^9 + 2*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = sum(k=0, (n-1)\3, x^(3*k+1) * prod(i=1,k, 1 - x^(2*i-1), 1 + A) / (1 - x^(2*k+1)) ); polcoeff(A, n))};

Formula

a(n) = A008443(n) - A290735(n) = A290737(n) - A143064(n).

A308745 Expansion of 1/(1 - x*(1 + x)/(1 - x^2*(1 + x^2)/(1 - x^3*(1 + x^3)/(1 - x^4*(1 + x^4)/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 36, 76, 161, 342, 726, 1542, 3276, 6960, 14788, 31422, 66767, 141872, 301464, 640584, 1361188, 2892417, 6146164, 13060136, 27751818, 58970564, 125308114, 266270558, 565805452, 1202295228, 2554789536, 5428741218, 11535678790, 24512475453
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^k (1 + x^k), 1, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

From Vaclav Kotesovec, Jun 25 2019: (Start)
a(n) ~ c * d^n, where
d = 2.124927028900893046638236231387101475346473032396641627320401...
c = 0.386397654364351443933577245182777062935616240164642598839093... (End)
From Peter Bala, Dec 18 2020: (Start)
Conjectural g.f.: 1/(2 - (1 + x)/(1 - x^2/(2 - (1 + x^3)/(1 - x^4/(2 - (1 + x^5)/(1 - x^6/(2 - ... ))))))).
More generally it appears that 1/(1 - t*x*(1 + u*x)/(1 - t*x^2*(1 + u*x^2)/(1 - t*x^3*(1 + u*x^3)/(1 - t*x^4*(1 + u*x^4)/(1 - ... ))))) = 1/(1 + u - (u + t*x)/(1 - t*x^2/(1 + u - (u + t*x^3)/(1 - t*x^4/(1 + u - (u + t*x^5)/(1 - ... )))))). (End)
Showing 1-8 of 8 results.