cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143215 a(n) = prime(n) * Sum_{i=1..n} prime(i).

Original entry on oeis.org

4, 15, 50, 119, 308, 533, 986, 1463, 2300, 3741, 4960, 7289, 9758, 12083, 15416, 20193, 25960, 30561, 38056, 45369, 51976, 62489, 72542, 85707, 102820, 117261, 130192, 146697, 161320, 180009, 218440, 242481, 272356, 295653, 339124, 366477
Offset: 1

Views

Author

Gary W. Adamson, Jul 30 2008

Keywords

Comments

Row sums of triangle A087112.
Sum of semiprimes (A001358) with greater prime factor prime(n). - Gus Wiseman, Dec 06 2020

Examples

			The series begins (4, 15, 50, 119, 308,...) since the primes = (2, 3, 5, 7, 11,...) and partial sum of primes = (2, 5, 10, 17, 28,...).
a(5) = 308 = 11 * 28.
a(4) = 119 = sum of row 4 terms of triangle A087112: (14 + 21 + 35 + 49).
		

Crossrefs

Row sums of A087112.
The squarefree version is A339194, row sums of A339116.
Semiprimes grouped by weight are A338904, with row sums A024697.
Squarefree semiprimes grouped by weight are A338905, with row sums A025129.
Squarefree numbers grouped by greatest prime factor are A339195, with row sums A339360.
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A332765 is the greatest semiprime of weight n.
A338898/A338912/A338913 give the prime indices of semiprimes.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.

Programs

Formula

a(n) = A000040(n) * A007504(n).

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Sep 21 2009