A143215 a(n) = prime(n) * Sum_{i=1..n} prime(i).
4, 15, 50, 119, 308, 533, 986, 1463, 2300, 3741, 4960, 7289, 9758, 12083, 15416, 20193, 25960, 30561, 38056, 45369, 51976, 62489, 72542, 85707, 102820, 117261, 130192, 146697, 161320, 180009, 218440, 242481, 272356, 295653, 339124, 366477
Offset: 1
Keywords
Examples
The series begins (4, 15, 50, 119, 308,...) since the primes = (2, 3, 5, 7, 11,...) and partial sum of primes = (2, 5, 10, 17, 28,...). a(5) = 308 = 11 * 28. a(4) = 119 = sum of row 4 terms of triangle A087112: (14 + 21 + 35 + 49).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Haskell
a143215 n = a000040 n * a007504 n -- Reinhard Zumkeller, Nov 25 2012
-
Magma
A143215:= func< n | NthPrime(n)*(&+[NthPrime(j): j in [1..n]]) >; [A143215(n): n in [1..50]]; // G. C. Greubel, Aug 27 2024
-
Maple
A143215:=n->ithprime(n)*sum(ithprime(i), i=1..n); seq(A143215(n), n=1..50); # Wesley Ivan Hurt, Mar 26 2014
-
Mathematica
Table[Prime[n]*Sum[Prime[i], {i, n}], {n, 50}] (* Wesley Ivan Hurt, Mar 26 2014 *)
-
PARI
a(n) = prime(n)*vecsum(primes(n)); \\ Michel Marcus, Jun 15 2024
-
SageMath
def A143215(n): return nth_prime(n)*sum(nth_prime(j) for j in range(1,n+1)) [A143215(n) for n in range(1,51)] # G. C. Greubel, Aug 27 2024
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Sep 21 2009
Comments