A143280 Decimal expansion of m(2) = Sum_{n>=0} 1/n!!.
3, 0, 5, 9, 4, 0, 7, 4, 0, 5, 3, 4, 2, 5, 7, 6, 1, 4, 4, 5, 3, 9, 4, 7, 5, 4, 9, 9, 2, 3, 3, 2, 7, 8, 6, 1, 2, 9, 7, 7, 2, 5, 4, 7, 2, 6, 3, 3, 5, 3, 4, 0, 2, 0, 9, 2, 9, 9, 7, 1, 8, 7, 7, 9, 8, 0, 5, 4, 4, 2, 8, 1, 9, 6, 8, 4, 6, 1, 3, 5, 3, 5, 7, 4, 8, 1, 8, 5, 7, 4, 4, 8, 3, 4, 9, 7, 8, 2, 8, 3, 1, 5, 0, 1, 5
Offset: 1
Examples
3.05940740534257614453947549923327861297725472633534020929971877980544281968...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Michael Penn, Finding the closed form for a double factorial sum, YouTube video, 2022.
- Eric Weisstein's World of Mathematics, Double Factorial
- Eric Weisstein's World of Mathematics, Reciprocal Multifactorial Constant
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); Exp(1/2)*(1 + Sqrt(Pi(R)/2)*Erf(1/Sqrt(2) )); // G. C. Greubel, Mar 27 2019
-
Mathematica
RealDigits[ Sqrt[E] + Sqrt[E*Pi/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* or *) RealDigits[ Sum[1/n!!, {n, 0, 125}], 10, 105][[1]] (* Robert G. Wilson v, Apr 09 2014 *) RealDigits[Total[1/Range[0,200]!!],10,120][[1]] (* Harvey P. Dale, Apr 10 2022 *)
-
PARI
default(realprecision, 100); exp(1/2)*(1 + sqrt(Pi/2)*(1-erfc(1/sqrt(2) ))) \\ G. C. Greubel, Mar 27 2019
-
Sage
numerical_approx(exp(1/2)*(1 + sqrt(pi/2)*erf(1/sqrt(2))), digits=100) # G. C. Greubel, Mar 27 2019
Formula
Equals sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)).
Comments