cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143280 Decimal expansion of m(2) = Sum_{n>=0} 1/n!!.

Original entry on oeis.org

3, 0, 5, 9, 4, 0, 7, 4, 0, 5, 3, 4, 2, 5, 7, 6, 1, 4, 4, 5, 3, 9, 4, 7, 5, 4, 9, 9, 2, 3, 3, 2, 7, 8, 6, 1, 2, 9, 7, 7, 2, 5, 4, 7, 2, 6, 3, 3, 5, 3, 4, 0, 2, 0, 9, 2, 9, 9, 7, 1, 8, 7, 7, 9, 8, 0, 5, 4, 4, 2, 8, 1, 9, 6, 8, 4, 6, 1, 3, 5, 3, 5, 7, 4, 8, 1, 8, 5, 7, 4, 4, 8, 3, 4, 9, 7, 8, 2, 8, 3, 1, 5, 0, 1, 5
Offset: 1

Views

Author

Eric W. Weisstein, Aug 04 2008

Keywords

Comments

Also decimal expansion of Sum_{n>=1} n!!/n!. - Michel Lagneau, Dec 24 2011
Apart from the first digit, the same as A227569. - Robert G. Wilson v, Apr 09 2014

Examples

			3.05940740534257614453947549923327861297725472633534020929971877980544281968...
		

Crossrefs

Cf. A227569.
Cf. A006882 (n!!), this sequence (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Exp(1/2)*(1 + Sqrt(Pi(R)/2)*Erf(1/Sqrt(2) )); // G. C. Greubel, Mar 27 2019
    
  • Mathematica
    RealDigits[ Sqrt[E] + Sqrt[E*Pi/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* or *)
    RealDigits[ Sum[1/n!!, {n, 0, 125}], 10, 105][[1]] (* Robert G. Wilson v, Apr 09 2014 *)
    RealDigits[Total[1/Range[0,200]!!],10,120][[1]] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    default(realprecision, 100); exp(1/2)*(1 + sqrt(Pi/2)*(1-erfc(1/sqrt(2) ))) \\ G. C. Greubel, Mar 27 2019
    
  • Sage
    numerical_approx(exp(1/2)*(1 + sqrt(pi/2)*erf(1/sqrt(2))), digits=100) # G. C. Greubel, Mar 27 2019

Formula

Equals sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)).