A143419 G.f.: 1/p(x), where p(x) = degree 22 Salem polynomial p(x) = x^22 + x^21 - x^19 - 2*x^18 - 3*x^17 - 3*x^16 - 2*x^15 + 2*x^13 + 4*x^12 + 5*x^11 + 4*x^10 + 2*x^9 - 2*x^7 - 3*x^6 - 3*x^5 - 2*x^4 - x^3 + x + 1.
1, -1, 1, 0, 1, 1, 1, 2, 2, 4, 4, 7, 9, 12, 17, 23, 32, 44, 60, 83, 113, 156, 214, 294, 403, 554, 760, 1044, 1433, 1967, 2701, 3708, 5091, 6988, 9596, 13172, 18085, 24828, 34086, 46797, 64246, 88203, 121092, 166246, 228237, 313343, 430185, 590594, 810819
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Curtis T. McMullen, Dynamics on K3 surfaces: Salem numbers and Siegel disks, 2001
- Index entries for linear recurrences with constant coefficients, signature (-1,0,1,2,3,3,2,0,-2,-4,-5,-4,-2,0,2,3,3,2,1,0,-1,-1).
Crossrefs
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(x^22 +x^21-x^19-2*x^18-3*x^17-3*x^16-2*x^15+2*x^13+4*x^12+5*x^11 + 4*x^10+2*x^9-2*x^7-3*x^6-3*x^5-2*x^4-x^3+x+1))); // G. C. Greubel, Nov 03 2018 -
Mathematica
f[x_] = x^22 + x^21 - x^19 - 2*x^18 - 3*x^17 - 3*x^16 - 2*x^15 + 2*x^13 + 4*x^12 + 5*x^11 + 4*x^10 + 2*x^9 - 2*x^7 - 3*x^6 - 3*x^5 - 2*x^4 - x^3 + x + 1; CoefficientList[Series[1/f[x], {x, 0, 50}], x] LinearRecurrence[{-1,0,1,2,3,3,2,0,-2,-4,-5,-4,-2,0,2,3,3,2,1,0,-1,-1},{1,-1,1,0,1,1,1,2,2,4,4,7,9,12,17,23,32,44,60,83,113,156},50] (* Harvey P. Dale, Aug 18 2024 *)
-
PARI
p(x)=x^22 + x^21 - x^19 - 2*x^18 - 3*x^17 - 3*x^16 - 2*x^15 + 2*x^13 + 4*x^12 + 5*x^11 + 4*x^10 + 2*x^9 - 2*x^7 - 3*x^6 - 3*x^5 - 2*x^4 - x^3 + x + 1; Vec(1/p(x)+O(x^60)) \\ Charles R Greathouse IV, Feb 13 2011
Formula
a(n) = -a(n-1) + a(n-3) + 2*a(n-4) + 3*a(n-5) + 3*a(n-6) + 2*a(n-7) - 2*a(n-9) - 4*a(n-10) - 5*a(n-11) - 4*a(n-12) - 2*a(n-13) + 2*a(n-15) + 3*a(n-16) + 3*a(n-17) + 2*a(n-18) + a(n-19) - a(n-21) - a(n-22). - Franck Maminirina Ramaharo, Oct 30 2018
Extensions
Edited by N. J. A. Sloane, Dec 12 2008
More terms from Sean A. Irvine, Feb 13 2011
Offset corrected, and more terms from Franck Maminirina Ramaharo, Nov 02 2018