cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143543 Triangle read by rows: T(n,k) = number of labeled graphs on n nodes with k connected components, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 38, 19, 6, 1, 728, 230, 55, 10, 1, 26704, 5098, 825, 125, 15, 1, 1866256, 207536, 20818, 2275, 245, 21, 1, 251548592, 15891372, 925036, 64673, 5320, 434, 28, 1, 66296291072, 2343580752, 76321756, 3102204, 169113, 11088, 714, 36, 1
Offset: 1

Views

Author

Max Alekseyev, Aug 23 2008

Keywords

Comments

The Bell transform of A001187(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 17 2016

Examples

			The triangle T(n,k) starts as:
n=1:     1;
n=2:     1,    1;
n=3:     4,    3,   1;
n=4:    38,   19,   6,   1;
n=5:   728,  230,  55,  10,  1;
n=6: 26704, 5098, 825, 125, 15, 1;
...
		

Crossrefs

Cf. A001187 (first column), A006125 (row sums), A106240 (unlabeled variant).
Cf. A125207.
T(2n,n) gives A369827.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-add(
          binomial(n, k)*2^((n-k)*(n-k-1)/2)*g(k)*k, k=1..n-1)/n)
        end:
    b:= proc(n) option remember; `if`(n=0, 1, add(expand(
          b(n-j)*binomial(n-1, j-1)*g(j)*x), j=1..n))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Feb 02 2024
  • Mathematica
    a= Sum[2^Binomial[n,2] x^n/n!,{n,0,10}];
    Rest[Transpose[Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid (* Geoffrey Critzer, Mar 15 2011 *)
  • PARI
    T(n)={[Vecrev(p/y) | p <- Vec(serlaplace(exp(y*log(sum(k=0, n, 2^binomial(k,2)*x^k/k!, O(x*x^n))))))]}
    { foreach(T(8), row, print(row)) } \\ Andrew Howroyd, Jun 14 2025
  • Sage
    # uses[bell_matrix from A264428, A001187]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: A001187(n+1), 9) # Peter Luschny, Jan 17 2016
    

Formula

SUM[n,k=0..oo] T(n,k) * x^n * y^k / n! = exp( y*( F(x) - 1 ) ) = ( SUM[n=0..oo] 2^binomial(n, 2)*x^n/n! )^y, where F(x) is e.g.f. of A001187.
T(n,k) = Sum_{q=0..n-1} C(n-1, q) T(q, k-1) 2^C(n-q,2) - Sum_{q=0..n-2} C(n-1, q) T(q+1, k) 2^C(n-1-q, 2) where T(0,0) = 1 and T(0,k) = 0 and T(n,0) = 0. - Marko Riedel, Feb 04 2019
Sum_{k=1..n} k * T(n,k) = A125207(n) - Alois P. Heinz, Feb 02 2024