A143608 A005319 and A002315 interleaved.
0, 1, 4, 7, 24, 41, 140, 239, 816, 1393, 4756, 8119, 27720, 47321, 161564, 275807, 941664, 1607521, 5488420, 9369319, 31988856, 54608393, 186444716, 318281039, 1086679440, 1855077841, 6333631924, 10812186007, 36915112104, 63018038201, 215157040700
Offset: 0
References
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
- Creighton Kenneth Dement, Comments on A143608 and A143609
- Vincent Granville, Successive records in mathematical sequences: surprising result, Mathematics Stack Exchange, 2019.
- Clark Kimberling, Best lower and upper approximations to irrational numbers, Elem. Math. vol. 52 iss. 3 (1997) 122-126.
- D. H. Lehmer, An extended theory of Lucas' functions, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448.
- Eric Weisstein's World of Mathematics, Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Programs
-
Magma
I:=[0,1,4,7]; [n le 4 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Mar 27 2018
-
Maple
A143608 := proc(n) option remember; if n <= 3 then op(n+1,[0,1,4,7]) ; else 6*procname(n-2)-procname(n-4) ; end if; end proc: # R. J. Mathar, Jul 22 2012
-
Mathematica
a = -4; b = -1; Reap[While[b<2000000000, t = 4*b-a; Sow[t]; a=b; b=t; t = 2*b-a; Sow[t]; a=b; b=t]][[2,1]] CoefficientList[Series[x*(1 + 4*x + x^2)/(1 - 6*x^2 + x^4), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 24 2014 *) LinearRecurrence[{0, 6, 0, -1}, {0, 1, 4, 7}, 31] (* Jean-François Alcover, Sep 21 2017 *)
-
PARI
a(n)=([0,1,0,0;0,0,1,0;0,0,0,1;-1,0,6,0]^n*[0;1;4;7])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
-
PARI
concat(0, Vec(x*(1+4*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)) + O(x^50))) \\ Colin Barker, Mar 27 2016
Formula
a(2*n) = (a(2*n - 1) + a(2*n + 1))/2.
a(2*n + 1) = (a(2*n) + a(2*n + 2))/4.
a(2*n) = 4*A001109(n).
From Colin Barker, Jun 29 2012: (Start)
a(n) = 6*a(n-2) - a(n-4).
G.f.: x*(1 + 4*x + x^2)/((1 + 2*x - x^2)*(1 - 2*x - x^2)) = x*(1 + 4*x + x^2)/(1 - 6*x^2 + x^4). (End)
a(n)*a(n+1) + 1 = A001653(n+1). - Charlie Marion, Dec 11 2012
a(n) = (((-2 - sqrt(2) + (-1)^n * (-2+sqrt(2))) * ((-1+sqrt(2))^n - (1+sqrt(2))^n)))/(4*sqrt(2)). - Colin Barker, Mar 27 2016
Comments