cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A146962 a(n) = 10*a(n-1) - 19*a(n-2) with a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 31, 215, 1561, 11525, 85591, 636935, 4743121, 35329445, 263175151, 1960492055, 14604592681, 108796577765, 810478516711, 6037650189575, 44977410078241, 335058747180485, 2496016680318271, 18594050606753495
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Nov 03 2008

Keywords

Comments

Binomial transform of A143648.
Inverse binomial transform of A145301.

Crossrefs

Programs

  • GAP
    a:=[1,5];; for n in [3..30] do a[n]:=10*a[n-1]-19*a[n-2]; od; a; # G. C. Greubel, Jan 08 2020
  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-6); S:=[ ((5+r6)^n+(5-r6)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 05 2008
    
  • Maple
    seq(coeff(series((1-5*x)/(1-10*x+19*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 08 2020
  • Mathematica
    LinearRecurrence[{10,-19},{1,5},30] (* Harvey P. Dale, Apr 27 2014 *)
    CoefficientList[Series[(1-5x)/(1-10x+19x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 28 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-5*x)/(1-10*x+19*x^2)) \\ G. C. Greubel, Jan 08 2020
    
  • Sage
    def A146962_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-5*x)/(1-10*x+19*x^2) ).list()
    A146962_list(30) # G. C. Greubel, Jan 08 2020
    

Formula

a(n) = ((5 + sqrt(6))^n + (5 - sqrt(6))^n)/2.
G.f.: (1-5*x)/(1-10*x+19*x^2). - Philippe Deléham and Klaus Brockhaus, Nov 05 2008
a(n) = (Sum_{k=0..n} A098158(n,k)*5^(2*k)*6^(n-k))/5^n. - Philippe Deléham, Nov 06 2008
E.g.f.: exp(5*x)*cosh(sqrt(6)*x). - G. C. Greubel, Jan 08 2020

Extensions

Extended beyond a(7) by Klaus Brockhaus, Nov 05 2008
Edited by Klaus Brockhaus, Jul 15 2009
Name from Philippe Deléham and Klaus Brockhaus, Nov 05 2008
Showing 1-1 of 1 results.