A144141 a(n) = Hermite(n,2).
1, 4, 14, 40, 76, -16, -824, -3104, -880, 46144, 200416, -121216, -4894016, -16666880, 60576896, 708980224, 1018614016, -18612911104, -109084520960, 233726715904, 5080118660096, 10971406004224, -169479359707136, -1160659303014400, 3153413334470656
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..729
Programs
-
Magma
[(&+[(-1)^k*Factorial(n)*(4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jul 10 2018
-
Mathematica
lst={};Do[AppendTo[lst,HermiteH[n,2]],{n,0,7^2}];lst HermiteH[Range[0,30],2] (* Harvey P. Dale, May 20 2012 *)
-
PARI
for(n=0, 50, print1(polhermite(n, 2), ", " )) \\ G. C. Greubel, Jul 10 2018
Formula
From G. C. Greubel, Jul 10 2018: (Start)
E.g.f.: exp(4*x - x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*4^(n-2*k)/(k!*(n-2*k)!). (End)