cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144151 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) = number of ways an undirected cycle of length k can be built from n labeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 3, 1, 5, 10, 10, 15, 12, 1, 6, 15, 20, 45, 72, 60, 1, 7, 21, 35, 105, 252, 420, 360, 1, 8, 28, 56, 210, 672, 1680, 2880, 2520, 1, 9, 36, 84, 378, 1512, 5040, 12960, 22680, 20160, 1, 10, 45, 120, 630, 3024, 12600, 43200, 113400, 201600, 181440
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2008

Keywords

Examples

			T(4,3) = 4, because 4 undirected cycles of length 3 can be built from 4 labeled nodes:
  .1.2. .1.2. .1-2. .1-2.
  ../|. .|\.. ..\|. .|/..
  .3-4. .3-4. .3.4. .3.4.
Triangle begins:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  3,  1;
  1, 4,  6,  4,  3;
  1, 5, 10, 10, 15, 12;
  ...
		

Crossrefs

Columns 0-4 give: A000012, A000027, A000217, A000292, A050534.
Diagonal gives: A001710.
Row sums are in A116723. - Alois P. Heinz, Jun 01 2009
Excluding columns k=0,1,and 2 the row sums are A002807. - Geoffrey Critzer, Jul 22 2016
Cf. A284947 (k-cycle counts for k >= 3 in the complete graph K_n). - Eric W. Weisstein, Apr 06 2017
T(2n,n) gives A006963(n+1) for n>=3.

Programs

  • Maple
    T:= (n,k)-> if k<=2 then binomial(n,k) else mul(n-j, j=0..k-1)/k/2 fi:
    seq(seq(T(n,k), k=0..n), n=0..12);
  • Mathematica
    t[n_, k_ /; k <= 2] := Binomial[n, k]; t[n_, k_] := Binomial[n, k]*(k-1)!/2; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 18 2013 *)
    CoefficientList[Table[1 + n x (2 + (n - 1) x + 2 HypergeometricPFQ[{1, 1, 1 - n}, {2}, -x])/4, {n, 0, 10}], x] (* Eric W. Weisstein, Apr 06 2017 *)

Formula

T(n,k) = C(n,k) if k<=2, else T(n,k) = C(n,k)*(k-1)!/2.
E.g.f.: exp(x)*(log(1/(1 - y*x))/2 + 1 + y*x/2 + (y*x)^2/4). - Geoffrey Critzer, Jul 22 2016