cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145051 Numerator of the first convergent to sqrt(n) using the recursion x = (n/x + x)/2.

Original entry on oeis.org

1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 10, 21, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 16, 33, 17, 35, 18, 37, 19, 39, 20, 41, 21, 43, 22, 45, 23, 47, 24, 49, 25, 51, 26, 53, 27, 55, 28, 57, 29, 59, 30, 61, 31, 63, 32, 65, 33, 67, 34, 69, 35, 71, 36, 73, 37, 75
Offset: 1

Views

Author

Cino Hilliard, Sep 30 2008

Keywords

Comments

This is the same as A026741 without the first 2 terms in A026741. The link describes the experimental derivation of the generating function.
From Jaroslav Krizek, May 28 2010: (Start)
Numerators of arithmetic means of the first n positive integers for n >= 1.
See A040001 - denominators of arithmetic means of the first n positive integers.
a(n) = A026741(n+1) = A000217(n) * A040001(n) / n. (End)
Minimum number of line segments to draw into a circle to partition the circle into n+1 congruent circular sectors, i.e., minimum number of straight cuts required to cut a circular cake into n+1 equal slices. - Felix Fröhlich, Sep 01 2015
Continued fraction expansion of A386934. - Kelvin Voskuijl, Aug 15 2025

Examples

			n=1, x=1; x = (1/1+1)/2 = 1/1;
n=2, x=1; x = (2/1+1)/2 = 3/2;
n=3, x=1; x = (3/1+1)/2 = 2/1.
G.f.: x + 3*x^2 + 2*x^3 + 5*x^4 + 3*x^5 + 7*x^6 + 4*x^7 + 9*x^8 + 5*x^9 + ...
		

Crossrefs

Programs

  • Magma
    [(n+1)*(3 - (-1)^(n-1))/4: n in [1..100]]; // Vincenzo Librandi, Sep 02 2015
  • Mathematica
    lst={};Do[a=n^2+n;b=n^2-n;c=a/b;AppendTo[lst,Denominator[c]],{n,2,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 20 2009 *)
  • PARI
    g(n, p) = x=1;for(j=1,p,x=(n/x+x)/2; if(j==1, print1(numerator(x), ",")))
    for(k=1,100,g(k,1))
    

Formula

From Paul Barry, Nov 22 2009: (Start)
G.f.: x*(1 + 3*x - x^3)/(1 - x^2)^2.
a(n+1) = (n + 2)*(3 - (-1)^n)/4;
a(n+1) = Sum_{k=0..n, if(k=floor(n/2) or k=floor((n+1)/2),1,0)*(k+1)}. (End)
E.g.f.: ((x + 2)*cosh(x) + (2*x + 1)*sinh(x) - 2)/2. - Stefano Spezia, Apr 04 2024