A145071 Partial sums of A000051, starting at n=1.
3, 8, 17, 34, 67, 132, 261, 518, 1031, 2056, 4105, 8202, 16395, 32780, 65549, 131086, 262159, 524304, 1048593, 2097170, 4194323, 8388628, 16777237, 33554454, 67108887, 134217752, 268435481, 536870938, 1073741851, 2147483676, 4294967325, 8589934622, 17179869215
Offset: 1
Examples
a(2) = a(1) + 2^2 + 1 = 3 + 4 + 1 = 8; a(3) = a(2) + 2^3 + 1 = 8 + 8 + 1 = 17.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Crossrefs
Programs
-
ARIBAS
a:=0; for n:=1 to 30 do a:=a+2**n+1; write(a,","); end;
-
Haskell
a145071 n = 2 ^ (n + 1) + n - 2 a145071_list = scanl1 (+) $ tail a000051_list -- Reinhard Zumkeller, Nov 16 2013
-
Mathematica
lst={};s=0;Do[s+=2^n+1;AppendTo[lst,s],{n,5!}];lst Accumulate[2^Range[30]+1] (* Harvey P. Dale, Feb 19 2023 *)
Formula
a(1) = 3; a(n) = a(n-1) + 2^n + 1 for n > 1.
a(n) = 2^(n+1) + n - 2. - Franklin T. Adams-Watters, Jul 06 2009
G.f.: x*(3-4*x)/((1-x)^2*(1-2*x)). - Colin Barker, Jan 11 2012
From Elmo R. Oliveira, Apr 01 2025: (Start)
E.g.f.: exp(x)*(x - 2 + 2*exp(x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) for n > 3. (End)
Extensions
Edited by Klaus Brockhaus, Oct 14 2008
Comments