cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A145153 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where sequence a_k of column k is the expansion of x/((1 - x - x^4)*(1 - x)^(k - 1)).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 3, 1, 1, 0, 1, 4, 6, 4, 2, 1, 0, 1, 5, 10, 10, 6, 3, 1, 0, 1, 6, 15, 20, 16, 9, 4, 1, 0, 1, 7, 21, 35, 36, 25, 13, 5, 2, 0, 1, 8, 28, 56, 71, 61, 38, 18, 7, 3, 0, 1, 9, 36, 84, 127, 132, 99, 56, 25, 10, 4, 0, 1, 10, 45, 120, 211, 259, 231, 155, 81, 35, 14, 5
Offset: 0

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Comments

Each row sequence a_n (for n > 0) is produced by a polynomial of degree n-1, whose (rational) coefficients are given in row n of A145140/A145141. The coefficients *(n-1)! are given in A145142.
Each column sequence a_k is produced by a recursion, whose coefficients are given by row k of A145152.

Examples

			Square array A(n,k) begins:
  0, 0, 0,  0,  0,  0,   0, ...
  1, 1, 1,  1,  1,  1,   1, ...
  0, 1, 2,  3,  4,  5,   6, ...
  0, 1, 3,  6, 10, 15,  21, ...
  0, 1, 4, 10, 20, 35,  56, ...
  1, 2, 6, 16, 36, 71, 127, ...
		

Crossrefs

Columns 0-9 give: A017898(n-1) for n>0, A003269, A098578, A145131, A145132, A145133, A145134, A145135, A145136, A145137.
Main diagonal gives: A145138.
Antidiaginal sums give: A145139.
Numerators/denominators of polynomials for rows give: A145140/A145141.

Programs

  • Maple
    A:= proc(n, k) coeftayl (x/ (1-x-x^4)/ (1-x)^(k-1), x=0, n) end:
    seq(seq(A(n, d-n), n=0..d), d=0..13);
  • Mathematica
    a[n_, k_] := SeriesCoefficient[x/(1 - x - x^4)/(1 - x)^(k - 1), {x, 0, n}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013 *)

Formula

G.f. of column k: x/((1-x-x^4)*(1-x)^(k-1)).

A145142 Triangle T(n,k), n>=1, 0<=k<=n-1, read by rows: T(n,k)/(n-1)! is the coefficient of x^k in polynomial p_n for the n-th row sequence of A145153.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 24, 6, 11, 6, 1, 120, 144, 50, 35, 10, 1, 720, 1200, 634, 225, 85, 15, 1, 5040, 9960, 6804, 2464, 735, 175, 21, 1, 80640, 89040, 71868, 29932, 8449, 1960, 322, 28, 1, 1088640, 1231776, 789984, 375164, 112644, 25473, 4536, 546, 36, 1
Offset: 1

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Examples

			Triangle begins:
    1;
    0,   1;
    0,   1,   1;
    0,   2,   3,   1;
   24,   6,  11,   6,   1;
  120, 144,  50,  35,  10,  1;
		

Crossrefs

T(n,k)/(n-1)! gives: A145140 / A145141.
Diagonal and lower diagonals 1-3 give: A000012, A000217, A000914, A001303.
Row sums are in A052593.

Programs

  • Maple
    row:= proc(n) option remember; local f,i,x; f:= unapply(simplify(sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); unapply(subs(solve({seq(f(i+1)= coeftayl(x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq(cat(a||i), i=0..n-1)}), sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); end: T:= (n,k)-> `if`(k<0 or k>=n,0, coeff(row(n)(x),x,k)*(n-1)!): seq(seq(T(n,k), k=0..n-1), n=1..12);
  • Mathematica
    row[n_] := Module[{f, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; Table[a[k], {k, 0, n-1}] /. Solve[eq] // First]; Table[row[n]*(n-1)!, {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 04 2014, after Alois P. Heinz *)

Formula

See program.

A145140 Numerators of triangle T(n,k), n>=1, 0<=k<=n - 1, read by rows: T(n,k) is the coefficient of x^k in polynomial p_n for the n-th row sequence of A145153.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 11, 1, 1, 1, 6, 5, 7, 1, 1, 1, 5, 317, 5, 17, 1, 1, 1, 83, 27, 22, 7, 5, 1, 1, 2, 53, 5989, 1069, 1207, 7, 23, 1, 1, 3, 611, 2743, 93791, 149, 1213, 1, 13, 1, 1, 4, 101, 25523, 5419, 20071, 397, 3253, 1, 29, 1, 1, 5, 32419, 11017, 30731, 21757
Offset: 1

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Examples

			1, 0, 1, 0, 1/2, 1/2, 0, 1/3, 1/2, 1/6, 1, 1/4, 11/24, 1/4, 1/24, 1, 6/5, 5/12, 7/24, 1/12, 1/120, 1, 5/3, 317/360, 5/16, 17/144, 1/48, 1/720 ... = A145140/A145141
As triangle:
  1
  0 1
  0 1/2 1/2
  0 1/3 1/2 1/6
  1 1/4 11/24 1/4 1/24
  1 6/5 5/12 7/24 1/12 1/120
		

Crossrefs

Denominators of T(n, k): A145141. T(n, k)*(n-1)!: A145142.
Row sums give: A003269, A017898(n+3).

Programs

  • Maple
    row:= proc(n) option remember; local f,i,x; f:= unapply(simplify(sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); unapply(subs(solve({seq(f(i+1)= coeftayl(x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq(cat(a||i), i=0..n-1)}), sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); end: T:= (n,k)-> coeff(row(n)(x), x, k): seq(seq(numer(T(n,k)), k=0..n-1), n=1..14);
  • Mathematica
    row[n_] := Module[{f, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; Table[a[k], {k, 0, n-1}] /. Solve[eq] // First]; Table[row[n] // Numerator, {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 04 2014, after Alois P. Heinz *)

Formula

See program.

A145138 Main diagonal of square array A145153.

Original entry on oeis.org

0, 1, 2, 6, 20, 71, 259, 960, 3597, 13586, 51635, 197223, 756380, 2910707, 11233311, 43460144, 168502849, 654547456, 2546819347, 9924285801, 38723794820, 151278566731, 591628491483, 2316065644414, 9074988880769, 35587925333525, 139666503235814, 548516611541343
Offset: 0

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeftayl(x/(1-x-x^4)/(1-x)^(n-1), x=0, n):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<5, n*(n+1)*(n^2-4*n+6)/6,
           a(n-4)+(2*(35*n^3-207*n^2+310*n-78)*a(n-1)-(203*n^3
           -1244*n^2+1891*n-130)*a(n-2)+(2*n-7)*(7*n-19)*n*
           (10*a(n-3)-2*a(n-5)))/((7*n-26)*(n-1)^2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 18 2019
  • Mathematica
    a[n_] := SeriesCoefficient[x/(1-x-x^4)/(1-x)^(n-1), {x, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 10 2022 *)

Formula

a(n) = [x^n] x/((1-x-x^4)*(1-x)^(n-1)).

A145139 Antidiagonal sums of A145153.

Original entry on oeis.org

0, 1, 1, 2, 4, 9, 18, 36, 72, 145, 291, 583, 1167, 2336, 4675, 9354, 18713, 37433, 74876, 149766, 299551, 599128, 1198292, 2396634, 4793337, 9586769, 19173669, 38347519, 76695288, 153390921, 306782318, 613565293, 1227131493, 2454264238
Offset: 0

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,1,1,2,4];; for n in [6..40] do a[n]:=3*a[n-1]-2*a[n-2]+a[n-4] -2*a[n-5]; od; a; # G. C. Greubel, May 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-x)^2/((1-2*x)*(1-x-x^4)) )); // G. C. Greubel, May 21 2019
    
  • Maple
    a:= n-> (Matrix([[4, 2, 1, 1, 0]]). Matrix (5, (i,j)-> if i=j-1 then 1 elif j=1 then [3, -2, 0, 1, -2][i] else 0 fi)^n)[1,5]: seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x*(1-x)^2/((1-2*x)*(1-x-x^4)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
  • PARI
    my(x='x+O('x^40)); concat([0], Vec(x*(1-x)^2/((1-2*x)*(1-x-x^4)))) \\ G. C. Greubel, May 21 2019
    
  • Sage
    (x*(1-x)^2/((1-2*x)*(1-x-x^4))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 21 2019
    

Formula

G.f.: x*(1-x)^2 / ((1-2*x)*(1-x-x^4)).
Showing 1-5 of 5 results.