cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A145149 7th column of A145142.

Original entry on oeis.org

1, 28, 546, 9450, 165693, 3065238, 59919431, 1226978753, 26377959608, 598190993400, 14328713682920, 361513209493800, 9581318478006976, 266382420824204560, 7761376103890530800, 236610865058490439440, 7532969497593532001856, 250026557590986469841856
Offset: 8

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Crossrefs

Cf. A145153.

Programs

  • Maple
    row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 7) *(n-1)!): seq (a(n), n=8..26);
  • Mathematica
    row[n_] := row[n] = Module[{f, i, x, a}, f = Function[Sum[a[i]*#^i, {i, 0, n-1}]]; Function[x, Sum[a[i]*x^i, {i, 0, n-1}] /. First @ Solve[Table[f[i+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^i, {x, 0, n}], {i, 0, n-1}]]]]; a[n_] := If[n == 0, 0, SeriesCoefficient[row[n][x], {x, 0, 7}]*(n-1)!]; Table[a[n], {n, 8, 26}] (* Jean-François Alcover, Feb 13 2014, after Maple *)

Extensions

More terms from Vincenzo Librandi, Feb 15 2014

A145143 1st column of A145142.

Original entry on oeis.org

1, 1, 2, 6, 144, 1200, 9960, 89040, 1231776, 18325440, 280100160, 4415368320, 78497147520, 1538731434240, 32250825734400, 708789321676800, 16531867860480000, 410557135229337600, 10800330695046144000, 298418233851795456000, 8641298765266642944000
Offset: 2

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Crossrefs

Programs

  • Maple
    row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 1) *(n-1)!): seq (a(n), n=2..23);
  • Mathematica
    row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[2]]*(n-1)!; Table[a[n], {n, 2, 23}] (* Jean-François Alcover, Feb 14 2014, after Maple *)

A145144 2nd column of A145142.

Original entry on oeis.org

1, 3, 11, 50, 634, 6804, 71868, 789984, 11025936, 174509280, 2940903360, 51707242080, 987781034304, 20520063789120, 456583392034560, 10712403843563520, 265316096850923520, 6948996535924162560
Offset: 3

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Crossrefs

Cf. A145153.

Programs

  • Maple
    row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 2) *(n-1)!): seq (a(n), n=3..23);
  • Mathematica
    row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[3]]*(n-1)!; Table[a[n], {n, 3, 23}] (* Jean-François Alcover, Feb 14 2014, after Maple *)

A145145 3rd column of A145142.

Original entry on oeis.org

1, 6, 35, 225, 2464, 29932, 375164, 4877100, 73016856, 1229669496, 22393143552, 430226343456, 8838633396384, 195021406776960, 4592633620285440, 114230969866103040, 2991995263667137536, 82505359191832358400
Offset: 4

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Crossrefs

Cf. A145153.

Programs

  • Maple
    row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 3) *(n-1)!): seq (a(n), n=4..25);
  • Mathematica
    row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[4]]*(n-1)!; Table[a[n], {n, 4, 25}] (* Jean-François Alcover, Feb 14 2014, after Maple *)

A145146 4th column of A145142.

Original entry on oeis.org

1, 10, 85, 735, 8449, 112644, 1605680, 23932700, 391910596, 7073468688, 138120962616, 2862132655200, 62993944853904, 1476042415885824, 36728281476425088, 964322664638298624, 26615080195964032896
Offset: 5

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Crossrefs

Cf. A145153.

Programs

  • Maple
    row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 4) *(n-1)!): seq (a(n), n=5..25);
  • Mathematica
    row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[5]]*(n-1)!; Table[a[n], {n, 5, 25}] (* Jean-François Alcover, Feb 14 2014, after Maple *)

A145147 5th column of A145142.

Original entry on oeis.org

1, 15, 175, 1960, 25473, 375165, 5967170, 99883410, 1794863356, 34897858996, 729308423480, 16183109779200, 379985643499344, 9441352087296912, 247902890514328224, 6852200357138738400, 198716076620554542336
Offset: 6

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Crossrefs

Cf. A145153.

Programs

  • Maple
    row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 5) *(n-1)!): seq (a(n), n=6..25);
  • Mathematica
    row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[6]]*(n-1)!; Table[a[n], {n, 6, 25}] (* Jean-François Alcover, Feb 14 2014, after Maple *)

A145148 6th column of A145142.

Original entry on oeis.org

1, 21, 322, 4536, 68313, 1123815, 19826015, 368232150, 7247538298, 152150838840, 3403471995560, 80589585571040, 2012376195058384, 52929114594971184, 1464737200231998960, 42545324327111272800, 1293727732305595341216
Offset: 7

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Crossrefs

Cf. A145153.

Programs

  • Maple
    row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 6) *(n-1)!): seq (a(n), n=7..26);
  • Mathematica
    row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[7]]*(n-1)!; Table[a[n], {n, 7, 26}] (* Jean-François Alcover, Feb 14 2014, after Maple *)

A145150 8th column of A145142.

Original entry on oeis.org

1, 36, 870, 18150, 369303, 7698834, 166748153, 3751722975, 87886591793, 2152001539688, 55209634265136, 1483339949950248, 41681455251697936, 1223731327819009800, 37510006764224474480, 1199164490827755488960
Offset: 9

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Crossrefs

Cf. A145153.

Programs

  • Maple
    row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 8) *(n-1)!): seq (a(n), n=9..26);
  • Mathematica
    row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[9]]*(n-1)!; Table[a[n], {n, 9, 26}] (* Jean-François Alcover, Feb 14 2014, after Maple *)

A145151 9th column of A145142.

Original entry on oeis.org

1, 45, 1320, 32670, 766623, 17990973, 431474615, 10643661600, 271155254513, 7162999744329, 196798229724018, 5629113506142750, 167609902621721416, 5193256923854366136, 167378142642521719832, 5608242214782541676496
Offset: 10

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Crossrefs

Cf. A145153.

Programs

  • Maple
    row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 9) *(n-1)!): seq (a(n), n=10..26);
  • Mathematica
    row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[10]]*(n-1)!; Table[a[n], {n, 10, 26}] (* Jean-François Alcover, Feb 14 2014, after Maple *)

A145153 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where sequence a_k of column k is the expansion of x/((1 - x - x^4)*(1 - x)^(k - 1)).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 3, 1, 1, 0, 1, 4, 6, 4, 2, 1, 0, 1, 5, 10, 10, 6, 3, 1, 0, 1, 6, 15, 20, 16, 9, 4, 1, 0, 1, 7, 21, 35, 36, 25, 13, 5, 2, 0, 1, 8, 28, 56, 71, 61, 38, 18, 7, 3, 0, 1, 9, 36, 84, 127, 132, 99, 56, 25, 10, 4, 0, 1, 10, 45, 120, 211, 259, 231, 155, 81, 35, 14, 5
Offset: 0

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Comments

Each row sequence a_n (for n > 0) is produced by a polynomial of degree n-1, whose (rational) coefficients are given in row n of A145140/A145141. The coefficients *(n-1)! are given in A145142.
Each column sequence a_k is produced by a recursion, whose coefficients are given by row k of A145152.

Examples

			Square array A(n,k) begins:
  0, 0, 0,  0,  0,  0,   0, ...
  1, 1, 1,  1,  1,  1,   1, ...
  0, 1, 2,  3,  4,  5,   6, ...
  0, 1, 3,  6, 10, 15,  21, ...
  0, 1, 4, 10, 20, 35,  56, ...
  1, 2, 6, 16, 36, 71, 127, ...
		

Crossrefs

Columns 0-9 give: A017898(n-1) for n>0, A003269, A098578, A145131, A145132, A145133, A145134, A145135, A145136, A145137.
Main diagonal gives: A145138.
Antidiaginal sums give: A145139.
Numerators/denominators of polynomials for rows give: A145140/A145141.

Programs

  • Maple
    A:= proc(n, k) coeftayl (x/ (1-x-x^4)/ (1-x)^(k-1), x=0, n) end:
    seq(seq(A(n, d-n), n=0..d), d=0..13);
  • Mathematica
    a[n_, k_] := SeriesCoefficient[x/(1 - x - x^4)/(1 - x)^(k - 1), {x, 0, n}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013 *)

Formula

G.f. of column k: x/((1-x-x^4)*(1-x)^(k-1)).
Showing 1-10 of 17 results. Next