cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A120443 Number of (undirected) Hamiltonian paths in the n X n grid graph.

Original entry on oeis.org

1, 4, 20, 276, 4324, 229348, 13535280, 3023313284, 745416341496, 730044829512632, 786671485270308848, 3452664855804347354220, 16652005717670534681315580, 331809088406733654427925292528, 7263611367960266490262600117251524
Offset: 1

Views

Author

David Bevan, Jul 19 2006

Keywords

Examples

			From _Robert FERREOL_, Apr 03 2019: (Start)
a(3) = 20:
there are 4 paths similar to
  + - + - +
          |
  + - + - +
  |
  + - + - +
8 paths similar to
  + - + - +
  |       |
  +   + - +
  |   |
  +   + - +
and 8 paths similar to
  + - + - +
  |       |
  +   +   +
  |   |   |
  +   + - +
(End)
		

Crossrefs

Formula

a(n) = A096969(n) / 2 for n > 1.

Extensions

More terms from Jesper L. Jacobsen (jesper.jacobsen(AT)u-psud.fr), Dec 12 2007

A000532 Number of Hamiltonian paths from NW to SW corners in an n X n grid.

Original entry on oeis.org

1, 1, 2, 8, 86, 1770, 88418, 8934966, 2087813834, 1013346943033, 1111598871478668, 2568944901392936854, 13251059359839620127088, 145194816279817259193401518, 3524171261632305641165676374930, 182653259988707123426135593460533473
Offset: 1

Views

Author

Russ Cox, Mar 15 1996

Keywords

Comments

Number of walks reaching each cell exactly once.

Crossrefs

Extensions

More terms from Zhao Hui Du, Jul 08 2008
Edited by Franklin T. Adams-Watters, Jul 03 2009
Name clarified by Andrew Howroyd, Apr 10 2016

A288518 Array read by antidiagonals: T(m,n) = number of (undirected) paths in the grid graph P_m X P_n.

Original entry on oeis.org

0, 1, 1, 3, 12, 3, 6, 49, 49, 6, 10, 146, 322, 146, 10, 15, 373, 1618, 1618, 373, 15, 21, 872, 7119, 14248, 7119, 872, 21, 28, 1929, 28917, 111030, 111030, 28917, 1929, 28, 36, 4118, 111360, 801756, 1530196, 801756, 111360, 4118, 36
Offset: 1

Views

Author

Andrew Howroyd, Jun 10 2017

Keywords

Comments

Paths of length zero are not counted here.

Examples

			Table starts:
=================================================================
m\n|  1    2      3       4         5          6            7
---|-------------------------------------------------------------
1  |  0    1      3       6        10         15           21 ...
2  |  1   12     49     146       373        872         1929 ...
3  |  3   49    322    1618      7119      28917       111360 ...
4  |  6  146   1618   14248    111030     801756      5493524 ...
5  | 10  373   7119  111030   1530196   19506257    235936139 ...
6  | 15  872  28917  801756  19506257  436619868   9260866349 ...
7  | 21 1929 111360 5493524 235936139 9260866349 343715004510 ...
...
		

Crossrefs

A271507 Number of self-avoiding walks of any length from NW to SW corners on an n X n grid or lattice.

Original entry on oeis.org

1, 2, 11, 178, 8590, 1246850, 550254085, 741333619848, 3046540983075504, 38141694646516492843, 1453908228148524205711098, 168707605740228097581729005751, 59588304533380500951726150179910606, 64061403305026776755367065417308840021540
Offset: 1

Views

Author

Andrew Howroyd, Apr 08 2016

Keywords

Crossrefs

Main diagonal of A271465.

Programs

  • Mathematica
    A271465 = Cases[Import["https://oeis.org/A271465/b271465.txt", "Table"], {, }][[All, 2]];
    a[n_] := A271465[[2 n^2 - 2 n + 1]];
    Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Sep 23 2019 *)
  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A271507(n):
        if n == 1: return 1
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, n
        paths = GraphSet.paths(start, goal)
        return paths.len()
    print([A271507(n) for n in range(1, 10)])  # Seiichi Manyama, Mar 21 2020

A378938 Array read by antidiagonals: T(m,n) is the number of Hamiltonian paths in an m X n grid which start in the top left corner.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 17, 17, 5, 1, 1, 6, 38, 52, 38, 6, 1, 1, 7, 78, 160, 160, 78, 7, 1, 1, 8, 164, 469, 824, 469, 164, 8, 1, 1, 9, 332, 1337, 3501, 3501, 1337, 332, 9, 1, 1, 10, 680, 3750, 16262, 22144, 16262, 3750, 680, 10, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 20 2024

Keywords

Comments

These paths are also called Greek-key tours. The path can end anywhere.

Examples

			Array begins:
======================================================
m\n | 1 2   3    4     5      6        7         8 ...
----+-------------------------------------------------
  1 | 1 1   1    1     1      1        1         1 ...
  2 | 1 2   3    4     5      6        7         8 ...
  3 | 1 3   8   17    38     78      164       332 ...
  4 | 1 4  17   52   160    469     1337      3750 ...
  5 | 1 5  38  160   824   3501    16262     68591 ...
  6 | 1 6  78  469  3501  22144   144476    899432 ...
  7 | 1 7 164 1337 16262 144476  1510446  13506023 ...
  8 | 1 8 332 3750 68591 899432 13506023 180160012 ...
  ...
		

Crossrefs

Formula

T(m,n) = T(n,m).

A145156 Number of Greek-key tours on a 5 X n board; i.e., self-avoiding walks on 5 X n grid starting in top left corner.

Original entry on oeis.org

1, 5, 38, 160, 824, 3501, 16262, 68591, 304177, 1276805, 5522791, 23117164, 98562435, 411870513, 1740941765, 7267608829, 30557297042, 127482101761, 534250130959, 2227966210989, 9317736040747, 38847892461656, 162258421050635, 676389635980185, 2822813259030961, 11766012342819549
Offset: 1

Views

Author

Nathaniel Johnston, Oct 03 2008

Keywords

Comments

From Andrew Howroyd, Nov 07 2015: (Start)
Greek Key Tours are self-avoiding walks that touch every vertex of the grid and start at the top-left corner.
The sequence may be enumerated using standard methods for counting Hamiltonian cycles on a modified graph with two additional nodes, one joined to a corner vertex and the other joined to all other vertices.
(End)

Crossrefs

Row 5 of A378938.

Formula

G.f.: -x*(3*x^13 -3*x^12 +17*x^11 -11*x^10 +11*x^9 -21*x^8 +67*x^7 -29*x^6 -65*x^5 +45*x^4 +8*x^3 -4*x^2 -x -1) / ((x +1)*(x^6 -x^5 +8*x^4 -8*x^3 -2*x^2 +5*x -1)*(2*x^6 +11*x^2 -1)). [conjectured by Colin Barker, Nov 09 2015; proved by Jay Pantone, Klotz, and Sullivan, Aug 01 2024]

Extensions

a(11)-a(15) added by Nathaniel Johnston, Oct 12 2008
a(16) added by Ruben Zilibowitz, Jul 10 2015
a(17) onwards from Andrew Howroyd, Nov 07 2015

A160240 Number of Greek-key tours on a 6 X n grid.

Original entry on oeis.org

1, 6, 78, 469, 3501, 22144, 144476, 899432, 5585508, 34092855, 206571444, 1241016042, 7407467656, 43975776229, 259779839242, 1528563721468, 8960651209082, 52368047294410, 305173796833144, 1774059940879290, 10289839706255591, 59564855651625602, 344177608427972004, 1985502681113986836
Offset: 1

Views

Author

Nathaniel Johnston, May 05 2009

Keywords

Comments

Greek-key tours are self-avoiding walks that touch every vertex of the grid and start at the bottom-left corner.
The sequence may be enumerated using standard methods for counting Hamiltonian cycles on a modified graph with two additional nodes, one joined to a corner vertex and the other joined to all other vertices. - Andrew Howroyd, Nov 07 2015

Crossrefs

Formula

See Links section for generating function. - Jay Pantone, Aug 01 2024

Extensions

a(11) onwards from Andrew Howroyd, Nov 07 2015

A160241 Number of Greek-key tours on a 7 X n grid.

Original entry on oeis.org

1, 7, 164, 1337, 16262, 144476, 1510446, 13506023, 132712481, 1185979605, 11264671456, 100572103736, 935551716239, 8347069749600, 76604373779441, 683160282998544, 6213169249692192, 55392188422262591, 500676083630457127, 4462726297606450762, 40165465812088131228, 357958181000067374304
Offset: 1

Views

Author

Nathaniel Johnston, May 05 2009

Keywords

Comments

Greek-key tours are self-avoiding walks that touch every vertex of the grid and start at the bottom-left corner.
The sequence may be enumerated using standard methods for counting Hamiltonian cycles on a modified graph with two additional nodes, one joined to a corner vertex and the other joined to all other vertices. - Andrew Howroyd, Nov 07 2015

Crossrefs

Formula

See Links section for generating function. Jay Pantone, Aug 06 2024

Extensions

a(11) onwards from Andrew Howroyd, Nov 07 2015

A331001 Number of symmetrical self-avoiding walks with maximum length on an n X n board which start in the upper left corner and go right on the first step.

Original entry on oeis.org

1, 1, 1, 2, 8, 24, 282, 888, 46933, 238119, 36027060, 187011538, 130162111969, 1084873972934, 2200211600730504, 18559765767843341, 174907641314142138422, 2355130982684196593401, 65250573687646264926302133, 884112393542714503429381555, 114482128183138374886637093070429, 2465467527044697154210112460659081
Offset: 1

Views

Author

S. Brunner, Feb 02 2020

Keywords

Comments

If you allow going down on the first step you get two times a(n) for n > 1.
All symmetrical self-avoiding walks on a square board with odd length seem to have a 180-degree rotational symmetry, and all symmetrical self-avoiding walks on a square board with even length seem to have either vertically or horizontally reflection symmetry.

Examples

			The solutions for n=3 and n=4:
  n=3:  |    n=4:
  1     |    1          2
  >>v   |   >>>v   |   >v>
  v<<   |   v<<<   |   v<^<
  >>    |   >>>v   |   v>v^
        |    <<<   |   >^>^
		

Crossrefs

Extensions

a(11)-a(20) from Andrew Howroyd, Feb 20 2020
a(21) from Andrew Howroyd, Oct 16 2024
a(22) from Oliver R. Bellwood, Jul 18 2025

A374307 Number of Greek-key tours on an 8 X n grid.

Original entry on oeis.org

1, 8, 332, 3750, 68591, 899432, 13506023, 180160012, 2510785227, 33330848454, 448079715759, 5893418278271, 77649390052196, 1011970457365017, 13165754032331389, 170232985496817728, 2195480228590892060, 28203099820000893198, 361391865363036263917, 4617813892310295762334
Offset: 1

Views

Author

Jay Pantone, Jul 23 2024

Keywords

Comments

Greek-key tours are self-avoiding walks that touch every vertex of the grid and start at the bottom-left corner.

Crossrefs

Formula

See Links section for generating function.

Extensions

a(20) onwards from Andrew Howroyd, Dec 21 2024
Showing 1-10 of 13 results. Next