cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A003763 Number of (undirected) Hamiltonian cycles on a 2n X 2n square grid of points.

Original entry on oeis.org

1, 6, 1072, 4638576, 467260456608, 1076226888605605706, 56126499620491437281263608, 65882516522625836326159786165530572, 1733926377888966183927790794055670829347983946, 1020460427390768793543026965678152831571073052662428097106
Offset: 1

Views

Author

Jeffrey Shallit, Feb 14 2002

Keywords

Comments

Orientation of the path is not important; you can start going either clockwise or counterclockwise.
The number is zero for a 2n+1 X 2n+1 grid (but see A222200).
These are also called "closed rook tours".

Examples

			a(1) = 1 because there is only one such path visiting all nodes of a square.
		

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Other enumerations of Hamiltonian cycles on a square grid: A120443, A140519, A140521, A222200, A222201.

Formula

a(n) = A321172(2n,2n). - Robert FERREOL, Apr 01 2019

Extensions

Two more terms from Andre Poenitz [André Pönitz] and Peter Tittmann (poenitz(AT)htwm.de), Mar 03 2003
a(8) from Herman Jamke (hermanjamke(AT)fastmail.fm), Nov 21 2006
a(9) and a(10) from Jesper L. Jacobsen (jesper.jacobsen(AT)u-psud.fr), Dec 12 2007

A000532 Number of Hamiltonian paths from NW to SW corners in an n X n grid.

Original entry on oeis.org

1, 1, 2, 8, 86, 1770, 88418, 8934966, 2087813834, 1013346943033, 1111598871478668, 2568944901392936854, 13251059359839620127088, 145194816279817259193401518, 3524171261632305641165676374930, 182653259988707123426135593460533473
Offset: 1

Views

Author

Russ Cox, Mar 15 1996

Keywords

Comments

Number of walks reaching each cell exactly once.

Crossrefs

Extensions

More terms from Zhao Hui Du, Jul 08 2008
Edited by Franklin T. Adams-Watters, Jul 03 2009
Name clarified by Andrew Howroyd, Apr 10 2016

A209077 Number of Hamiltonian circuits (or self-avoiding rook's tours) on a 2n X 2n grid reduced for symmetry, i.e., where rotations and reflections are not counted as distinct.

Original entry on oeis.org

1, 2, 149, 580717, 58407763266, 134528361351329451, 7015812452562871283559623, 8235314565328229583744138065519908, 216740797236120772990979350241355889872437894, 127557553423846099192878370713500303677609606263171680998
Offset: 1

Views

Author

N. J. A. Sloane, Mar 04 2012

Keywords

Comments

Christopher Hunt Gribble confirms a(3), and reports that there are 121 figures with group of order 1, 24 with group of order 2, and 4 with group of order 4. Then 121*(8/1) + 24*(8/2) + 4*(8/4) = 1072 = A003763(3), 121 + 24 + 4 = 149 = a(3). - N. J. A. Sloane, Feb 22 2013

References

  • Jon Wild, Posting to Sequence Fans Mailing List, Dec 10 2011.

Crossrefs

Extensions

a(5)-a(10) from Ed Wynn, Feb 05 2014

A332307 Array read by antidiagonals: T(m,n) is the number of (undirected) Hamiltonian paths in the m X n grid graph.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 14, 20, 14, 1, 1, 22, 62, 62, 22, 1, 1, 32, 132, 276, 132, 32, 1, 1, 44, 336, 1006, 1006, 336, 44, 1, 1, 58, 688, 3610, 4324, 3610, 688, 58, 1, 1, 74, 1578, 12010, 26996, 26996, 12010, 1578, 74, 1, 1, 92, 3190, 38984, 109722, 229348, 109722, 38984, 3190, 92, 1
Offset: 1

Views

Author

Andrew Howroyd, Feb 09 2020

Keywords

Examples

			Array begins:
================================================
m\n | 1  2   3     4      5       6        7
----+-------------------------------------------
  1 | 1  1   1     1      1       1        1 ...
  2 | 1  4   8    14     22      32       44 ...
  3 | 1  8  20    62    132     336      688 ...
  4 | 1 14  62   276   1006    3610    12010 ...
  5 | 1 22 132  1006   4324   26996   109722 ...
  6 | 1 32 336  3610  26996  229348  1620034 ...
  7 | 1 44 688 12010 109722 1620034 13535280 ...
  ...
		

Crossrefs

Formula

T(n,m) = T(m,n).

A145157 Number of Greek-key tours on an n X n board; i.e., self-avoiding walks on n X n grid starting in top left corner.

Original entry on oeis.org

1, 2, 8, 52, 824, 22144, 1510446, 180160012, 54986690944, 29805993260994, 41433610713353366, 103271401574007978038, 660340630211753942588170, 7618229614763015717175450784, 225419381425094248494363948728158
Offset: 1

Views

Author

Nathaniel Johnston, Oct 03 2008

Keywords

Comments

The sequence may be enumerated using standard methods for counting Hamiltonian cycles on a modified graph with two additional nodes, one joined to a corner vertex and the other joined to all other vertices. - Andrew Howroyd, Nov 08 2015

Crossrefs

Extensions

a(9)-a(15) from Andrew Howroyd, Nov 08 2015

A288518 Array read by antidiagonals: T(m,n) = number of (undirected) paths in the grid graph P_m X P_n.

Original entry on oeis.org

0, 1, 1, 3, 12, 3, 6, 49, 49, 6, 10, 146, 322, 146, 10, 15, 373, 1618, 1618, 373, 15, 21, 872, 7119, 14248, 7119, 872, 21, 28, 1929, 28917, 111030, 111030, 28917, 1929, 28, 36, 4118, 111360, 801756, 1530196, 801756, 111360, 4118, 36
Offset: 1

Views

Author

Andrew Howroyd, Jun 10 2017

Keywords

Comments

Paths of length zero are not counted here.

Examples

			Table starts:
=================================================================
m\n|  1    2      3       4         5          6            7
---|-------------------------------------------------------------
1  |  0    1      3       6        10         15           21 ...
2  |  1   12     49     146       373        872         1929 ...
3  |  3   49    322    1618      7119      28917       111360 ...
4  |  6  146   1618   14248    111030     801756      5493524 ...
5  | 10  373   7119  111030   1530196   19506257    235936139 ...
6  | 15  872  28917  801756  19506257  436619868   9260866349 ...
7  | 21 1929 111360 5493524 235936139 9260866349 343715004510 ...
...
		

Crossrefs

A271507 Number of self-avoiding walks of any length from NW to SW corners on an n X n grid or lattice.

Original entry on oeis.org

1, 2, 11, 178, 8590, 1246850, 550254085, 741333619848, 3046540983075504, 38141694646516492843, 1453908228148524205711098, 168707605740228097581729005751, 59588304533380500951726150179910606, 64061403305026776755367065417308840021540
Offset: 1

Views

Author

Andrew Howroyd, Apr 08 2016

Keywords

Crossrefs

Main diagonal of A271465.

Programs

  • Mathematica
    A271465 = Cases[Import["https://oeis.org/A271465/b271465.txt", "Table"], {, }][[All, 2]];
    a[n_] := A271465[[2 n^2 - 2 n + 1]];
    Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Sep 23 2019 *)
  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A271507(n):
        if n == 1: return 1
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, n
        paths = GraphSet.paths(start, goal)
        return paths.len()
    print([A271507(n) for n in range(1, 10)])  # Seiichi Manyama, Mar 21 2020

A121789 "Spanning Hamiltonian walks" on the square lattice (see Jensen web site for further information).

Original entry on oeis.org

2, 8, 34, 650, 12014, 1016492, 83761994, 32647369000, 12227920752840, 22181389298814376, 38166266554504010420, 323646210116765453608746, 2574827340090912815899810042, 102299512403818451392332665527950
Offset: 1

Views

Author

N. J. A. Sloane, Aug 30 2006

Keywords

Comments

Number of Hamiltonian paths in the graph P_{n+1} X P_{n+1} starting at any of the n+1 vertices on one side of the graph and terminating at any of the n+1 vertices on the opposite side. - Andrew Howroyd, Apr 10 2016

Crossrefs

A268838 Number of (undirected) Hamiltonian paths in the torus grid graph C_n X C_n.

Original entry on oeis.org

1, 4, 756, 45696, 2955700, 560028096, 126412047692, 93784124187136
Offset: 1

Views

Author

Andrew Howroyd, Feb 14 2016

Keywords

Comments

Here, X (sometimes also written \square) is the graph Cartesian product.

Crossrefs

A143246 Number of (directed) Hamiltonian circuits in the n X n grid graph.

Original entry on oeis.org

0, 2, 0, 12, 0, 2144, 0, 9277152, 0, 934520913216, 0, 2152453777211211412, 0, 112252999240982874562527216, 0, 131765033045251672652319572331061144, 0, 3467852755777932367855581588111341658695967892, 0
Offset: 1

Views

Author

Eric W. Weisstein, Aug 01 2008

Keywords

Crossrefs

Cf. A003763 (number of undirected cycles on 2n X 2n grid graph).
Cf. A222065 (A222065(n) = a(2n)).
Cf. A120443.
Showing 1-10 of 18 results. Next