cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A222199 Number of Hamiltonian cycles in the graph C_n X C_n.

Original entry on oeis.org

48, 1344, 23580, 3273360, 257165468, 171785923808, 61997157648756, 196554899918485160
Offset: 3

Views

Author

N. J. A. Sloane, Feb 14 2013

Keywords

Comments

C_n X C_n is also known as the (n,n)-torus grid graph.

Crossrefs

Programs

  • Mathematica
    Table[Length[FindHamiltonianCycle[GraphProduct[CycleGraph[n], CycleGraph[n], "Cartesian"], All]], {n, 3, 6}] (* Eric W. Weisstein, Dec 16 2023 *)

A296527 Number of (undirected) cycles in the n X n torus grid graph.

Original entry on oeis.org

312, 14704, 2183490, 995818716, 1383238940818, 5846378997135040, 75162787766308673244
Offset: 3

Views

Author

Eric W. Weisstein, Dec 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length[FindCycle[GraphProduct[CycleGraph[n], CycleGraph[n], "Cartesian"], Infinity, All]], {n, 3, 5}] (* Eric W. Weisstein, Dec 16 2023 *)
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_CnXCk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
            grids.append((i + (n - 1) * k, i))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
            grids.append((i + k - 1, i))
        return grids
    def A296527(n):
        universe = make_CnXCk(n, n)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    print([A296527(n) for n in range(3, 7)])  # Seiichi Manyama, Nov 22 2020

Extensions

a(7) from Andrew Howroyd, Dec 14 2017
a(8)-a(9) from Ed Wynn, Jun 28 2023

A268894 Number of Hamiltonian paths in C_n X P_n.

Original entry on oeis.org

1, 4, 144, 4016, 152230, 14557092, 1966154260, 761411682704, 411068703517542, 684434716944151900, 1572754514153890134760, 11579615738168536799184984, 117186519917858266359631481672, 3877921919790491112398750141807648, 176258463464553583688099296874564393850, 26493868301658838913487471166447301509560736
Offset: 1

Views

Author

Andrew Howroyd, Feb 15 2016

Keywords

Comments

This is the number of undirected paths.

Crossrefs

A339797 Number of (undirected) Hamiltonian paths in the graph C_3 X C_n.

Original entry on oeis.org

756, 4128, 18240, 73368, 277536, 1001760, 3512160, 12009480, 40390944, 133893936, 439304736, 1428450072, 4613176800, 14809528896, 47315578848, 150534443304, 477237381024, 1508232832080, 4753573999776, 14945425070136, 46886868887136, 146802927436128, 458818252975200
Offset: 3

Views

Author

Seiichi Manyama, Dec 17 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_CnXCk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
            grids.append((i + (n - 1) * k, i))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
            grids.append((i + k - 1, i))
        return grids
    def A(start, goal, n, k):
        universe = make_CnXCk(n, k)
        GraphSet.set_universe(universe)
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def B(n, k):
        m = k * n
        s = 0
        for i in range(1, m):
            for j in range(i + 1, m + 1):
                s += A(i, j, n, k)
        return s
    def A339797(n):
        return B(n, 3)
    print([A339797(n) for n in range(3, 10)])

A339798 Number of (undirected) Hamiltonian paths in the graph C_4 X C_n.

Original entry on oeis.org

4128, 45696, 287160, 2172480, 11866848, 76468352, 390714840, 2301083680, 11288784144, 62812654272, 299720429528, 1604776566400, 7505573487360, 39105991164160, 180179056818584, 920223907284960, 4191443432295472, 21088555826121280, 95195388883597464, 473503955161244480
Offset: 3

Views

Author

Seiichi Manyama, Dec 17 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_CnXCk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
            grids.append((i + (n - 1) * k, i))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
            grids.append((i + k - 1, i))
        return grids
    def A(start, goal, n, k):
        universe = make_CnXCk(n, k)
        GraphSet.set_universe(universe)
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def B(n, k):
        m = k * n
        s = 0
        for i in range(1, m):
            for j in range(i + 1, m + 1):
                s += A(i, j, n, k)
        return s
    def A339798(n):
        return B(n, 4)
    print([A339798(n) for n in range(3, 10)])

A358868 Number of (undirected) Hamiltonian paths in the graph C_5 X C_n.

Original entry on oeis.org

1160, 18240, 287160, 2955700, 29861820, 263890620, 2271291760, 18578622510, 148166461700, 1154270708140, 8816903664840, 66466271481610, 493981029964240, 3639806487902700, 26549365603051040, 192467514066590100, 1385199533746259460, 9923453811044261140, 70715845300102361800
Offset: 2

Views

Author

Seiichi Manyama, Dec 03 2022

Keywords

Crossrefs

Extensions

More terms from Ed Wynn, Jul 07 2023

A358870 Number of (undirected) Hamiltonian paths in the graph C_6 X C_n.

Original entry on oeis.org

3264, 73368, 2172480, 29861820, 560028096, 6632769528, 103075391424, 1156940480232, 16166871906480, 176333810290572, 2300510733948576, 24611138715163572, 306092489935215648, 3227108582232289260, 38755349620705085952, 403867959699992233836, 4722889110592680685152, 48750193590184268147100
Offset: 2

Views

Author

Seiichi Manyama, Dec 04 2022

Keywords

Crossrefs

Extensions

More terms from Ed Wynn, Jul 07 2023

A276291 Number of directed Hamiltonian paths on the n X n torus grid graph.

Original entry on oeis.org

1512, 91392, 5911400, 1120056192, 252824095384, 187568248374272
Offset: 3

Views

Author

Eric W. Weisstein, Nov 15 2016

Keywords

Formula

a(n) = 2 * A268838(n). - Andrew Howroyd, May 06 2017

Extensions

a(7)-a(8) from Andrew Howroyd, May 06 2017
Showing 1-8 of 8 results.