cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A120443 Number of (undirected) Hamiltonian paths in the n X n grid graph.

Original entry on oeis.org

1, 4, 20, 276, 4324, 229348, 13535280, 3023313284, 745416341496, 730044829512632, 786671485270308848, 3452664855804347354220, 16652005717670534681315580, 331809088406733654427925292528, 7263611367960266490262600117251524
Offset: 1

Views

Author

David Bevan, Jul 19 2006

Keywords

Examples

			From _Robert FERREOL_, Apr 03 2019: (Start)
a(3) = 20:
there are 4 paths similar to
  + - + - +
          |
  + - + - +
  |
  + - + - +
8 paths similar to
  + - + - +
  |       |
  +   + - +
  |   |
  +   + - +
and 8 paths similar to
  + - + - +
  |       |
  +   +   +
  |   |   |
  +   + - +
(End)
		

Crossrefs

Formula

a(n) = A096969(n) / 2 for n > 1.

Extensions

More terms from Jesper L. Jacobsen (jesper.jacobsen(AT)u-psud.fr), Dec 12 2007

A321172 Triangle read by rows: T(m,n) = number of Hamiltonian cycles on m X n grid of points (m >= 2, 2 <= n <= m).

Original entry on oeis.org

1, 1, 0, 1, 2, 6, 1, 0, 14, 0, 1, 4, 37, 154, 1072, 1, 0, 92, 0, 5320, 0, 1, 8, 236, 1696, 32675, 301384, 4638576, 1, 0, 596, 0, 175294, 0, 49483138, 0, 1, 16, 1517, 18684, 1024028, 17066492, 681728204, 13916993782, 467260456608
Offset: 2

Views

Author

Robert FERREOL, Jan 10 2019

Keywords

Comments

Orientation of the path is not important; you can start going either clockwise or counterclockwise. Paths related by symmetries are considered distinct.
The m X n grid of points when drawn forms a (m-1) X (n-1) rectangle of cells, so m-1 and n-1 are sometimes used as indices instead of m and n (see, e. g., Kreweras' reference below).
These cycles are also called "closed non-intersecting rook's tours" on m X n chess board.

Examples

			T(5,4)=14 is illustrated in the links above.
Table starts:
=================================================================
m\n|  2    3      4       5         6           7            8
---|-------------------------------------------------------------
2  |  1    1      1       1         1           1            1
3  |  1    0      2       0         4           0            8
4  |  1    2      6      14        37          92          236
5  |  1    0     14       0       154           0         1696
6  |  1    4     37     154      1072        5320        32675
7  |  1    0     92       0      5320           0       301384
8  |  1    8    236    1696     32675      301384      4638576
The table is symmetric, so it is completely described by its lower-left half.
		

Crossrefs

Row/column k=4..12 are: (with interspersed zeros for odd k): A006864, A006865, A145401, A145416, A145418, A160149, A180504, A180505, A213813.
Cf. A003763 (bisection of main diagonal), A222200 (subdiagonal), A231829, A270273, A332307.
T(n,2n) gives A333864.

Programs

  • Python
    # Program due to Laurent Jouhet-Reverdy
    def cycle(m, n):
         if (m%2==1 and n%2==1): return 0
         grid = [[0]*n for _ in range(m)]
         grid[0][0] = 1; grid[1][0] = 1
         counter = [0]; stop = m*n-1
         def run(i, j, nb_points):
             for ni, nj in [(i-1, j), (i+1, j), (i, j+1), (i, j-1)] :
                 if  0<=ni<=m-1 and 0<=nj<=n-1 and grid[ni][nj]==0 and (ni,nj)!=(0,1):
                     grid[ni][nj] = 1
                     run(ni, nj, nb_points+1)
                     grid[ni][nj] = 0
                 elif (ni,nj)==(0,1) and nb_points==stop:
                     counter[0] += 1
         run(1, 0, 2)
         return counter[0]
    L=[];n=7#maximum for a time < 1 mn
    for i in range(2,n):
        for j in range(2,i+1):
           L.append(cycle(i,j))
    print(L)

Formula

T(m,n) = T(n,m).
T(2m+1,2n+1) = 0.
T(2n,2n) = A003763(n).
T(n,n+1) = T(n+1,n) = A222200(n).
G. functions , G_m(x)=Sum {n>=0} T(m,n-2)*x^n after Stoyan's link p. 18 :
G_2(x) = 1/(1-x) = 1+x+x^2+...
G_3(x) = 1/(1-2*x^2) = 1+2*x^2+4*x^4+...
G_4(x) = 1/(1-2*x-2*x^2+2*x^3-x^4) = 1+2*x+6*x^2+...
G_5(x) = (1+3*x^2)/(1-11*x^2-2*x^6) = 1+14*x^2+154*x^4+...

Extensions

More terms from Pontus von Brömssen, Feb 15 2021

A003682 Number of (undirected) Hamiltonian paths in the n-ladder graph K_2 X P_n.

Original entry on oeis.org

1, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344, 382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258, 2354, 2452, 2552, 2654
Offset: 1

Views

Author

Keywords

Comments

Equals row sums of triangle A144336. - Gary W. Adamson, Sep 18 2008

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Row n=2 of A332307.
Equals A002061(n) + 1, n > 1.
Cf. A144336. - Gary W. Adamson, Sep 18 2008
Cf. A137882.

Programs

  • Maple
    a:=n->sum(binomial(2,2*j)+n,j=0..n): seq(a(n), n=0..46); # Zerinvary Lajos, Feb 22 2007
    seq(floor((n^3+2*n)/(n+1)),n=1..47); # Gary Detlefs, Feb 20 2010
  • Mathematica
    Join[{1}, Table[n^2 - n + 2, {n, 2, 50}]] (* Harvey P. Dale, Jun 14 2011 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {4, 8, 14}, 50]] (* Harvey P. Dale, Jun 14 2011 *)
  • PARI
    a(n)=if(n>1, n^2-n+2, 1) \\ Charles R Greathouse IV, Jan 05 2018

Formula

For n>1, a(n) = n^2 - n + 2 = A014206(n-1).
Equals binomial transform of [1, 3, 1, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 23 2008
G.f.: x*(1 + x - x^2 + x^3)/(1-x)^3. - R. J. Mathar, Dec 16 2008
a(n) = floor((n^3 + 2*n)/(n+1)). - Gary Detlefs, Feb 20 2010
Except for the first term, a(n) = 2*n + a(n-1), (with a(1)=4). - Vincenzo Librandi, Dec 06 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(1)=1, a(2)=4, a(3)=8. - Harvey P. Dale, Jun 14 2011
Sum_{n>=1} 1/a(n) = 1/2 + Pi*tanh(Pi*sqrt(7)/2)/sqrt(7) = 1.686827... - R. J. Mathar, Apr 24 2024
From Elmo R. Oliveira, Jun 06 2025: (Start)
E.g.f.: exp(x)*(2 + x^2) - (2 + x).
a(n) = A137882(n)/2. (End)

A378938 Array read by antidiagonals: T(m,n) is the number of Hamiltonian paths in an m X n grid which start in the top left corner.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 17, 17, 5, 1, 1, 6, 38, 52, 38, 6, 1, 1, 7, 78, 160, 160, 78, 7, 1, 1, 8, 164, 469, 824, 469, 164, 8, 1, 1, 9, 332, 1337, 3501, 3501, 1337, 332, 9, 1, 1, 10, 680, 3750, 16262, 22144, 16262, 3750, 680, 10, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 20 2024

Keywords

Comments

These paths are also called Greek-key tours. The path can end anywhere.

Examples

			Array begins:
======================================================
m\n | 1 2   3    4     5      6        7         8 ...
----+-------------------------------------------------
  1 | 1 1   1    1     1      1        1         1 ...
  2 | 1 2   3    4     5      6        7         8 ...
  3 | 1 3   8   17    38     78      164       332 ...
  4 | 1 4  17   52   160    469     1337      3750 ...
  5 | 1 5  38  160   824   3501    16262     68591 ...
  6 | 1 6  78  469  3501  22144   144476    899432 ...
  7 | 1 7 164 1337 16262 144476  1510446  13506023 ...
  8 | 1 8 332 3750 68591 899432 13506023 180160012 ...
  ...
		

Crossrefs

Formula

T(m,n) = T(n,m).

A003695 Number of Hamiltonian paths in P_4 X P_n.

Original entry on oeis.org

1, 14, 62, 276, 1006, 3610, 12010, 38984, 122188, 375122, 1128446, 3342794, 9767588, 28217820, 80709424, 228864620, 644060262, 1800346140, 5002457832, 13825549136, 38026348240, 104133664506, 284037629690, 771953153918, 2091075938320, 5647162827592, 15208169217918
Offset: 1

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Row n=4 of A332307.

Programs

  • Mathematica
    CoefficientList[Series[1 + 2 x (x^14 - 3 x^13 + 4 x^12 + 10 x^11 - 30 x^10 + 16 x^9 + 36 x^8 - 72 x^7 + 43 x^6 + 67 x^5 - 55 x^4 - 19 x^3 + 13 x^2 + 11 x - 7)/((x^2 + x - 1) (x^4 - 2 x^3 + 2 x^2 + 2 x - 1)^2 (x^4 - x^3 - 3 x^2 - x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 13 2013 *)

Formula

a(1) = 1,
a(2) = 14,
a(3) = 62,
a(4) = 276,
a(5) = 1006,
a(6) = 3610,
a(7) = 12010,
a(8) = 38984,
a(9) = 122188,
a(10) = 375122,
a(11) = 1128446,
a(12) = 3342794,
a(13) = 9767588,
a(14) = 28217820,
a(15) = 80709424,
a(16) = 228864620 and
a(n) = 6a(n-1) - 5a(n-2) - 27a(n-3) + 37a(n-4) + 48a(n-5) - 69a(n-6) - 38a(n-7) + 57a(n-8) - 2a(n-9) - 31a(n-10) + 13a(n-11) + 3a(n-12) - 4a(n-13) + a(n-14).
G.f.: x +2*x^2*(x^14 -3*x^13 +4*x^12 +10*x^11 -30*x^10 +16*x^9 +36*x^8 -72*x^7 +43*x^6 +67*x^5 -55*x^4 -19*x^3 +13*x^2 +11*x -7)/((x^2 +x -1) *(x^4 -2*x^3 +2*x^2 +2*x -1)^2 *(x^4 -x^3 -3*x^2 -x +1)). - Colin Barker, Aug 23 2012

Extensions

Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009

A003685 Number of Hamiltonian paths in P_3 X P_n.

Original entry on oeis.org

1, 8, 20, 62, 132, 336, 688, 1578, 3190, 6902, 13878, 29038, 58238, 119518, 239390, 485822, 972414, 1960830, 3923326, 7882494, 15768574, 31616510, 63240702, 126655486, 253327358, 507033598, 1014102014, 2029023230, 4058120190, 8118001662, 16236158974, 32476086270
Offset: 1

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Row n=3 of A332307.

Formula

a(n) = 3*a(n-1) + 2*a(n-2) - 12*a(n-3) + 4*a(n-4) + 12*a(n-5) - 8*a(n-6), n>8.
From David Bevan, Jul 21 2006: (Start)
a(2*m) = 121*2^(2*m-4) - 4*m*2^m - 25*2^(m-2) - 2, m > 1.
a(2*m+1) = 121*2^(2*m-3) - 31*m*2^(m-2) - 23*2^(m-1) - 2, m > 0.
a(n) = 8*a(n-2) - 20*a(n-4) + 16*a(n-6) + 6, n > 8. (End)
O.g.f.: (2*x^7-8*x^6+12*x^5-2*x^4-2*x^3-6*x^2+5*x+1)*x/((2*x-1)*(-1+2*x^2)^2*(-1+x)). - R. J. Mathar, Dec 05 2007

Extensions

Terms a(29) and beyond from Andrew Howroyd, Feb 10 2020

A003778 Number of Hamiltonian paths in P_5 X P_n.

Original entry on oeis.org

1, 22, 132, 1006, 4324, 26996, 109722, 602804, 2434670, 12287118, 49852352, 237425498, 969300694, 4434629912, 18203944458, 80978858522, 333840165288, 1456084764388, 6021921661718, 25904211802080
Offset: 1

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Row n=5 of A332307.

Formula

Faase gives a 36-term linear recurrence on his web page:
a(1) = 1,
a(2) = 22,
a(3) = 132,
a(4) = 1006,
a(5) = 4324,
a(6) = 26996,
a(7) = 109722,
a(8) = 602804,
a(9) = 2434670,
a(10) = 12287118,
a(11) = 49852352,
a(12) = 237425498,
a(13) = 969300694,
a(14) = 4434629912,
a(15) = 18203944458,
a(16) = 80978858522,
a(17) = 333840165288,
a(18) = 1456084764388,
a(19) = 6021921661718,
a(20) = 25904211802080,
a(21) = 107378816068904,
a(22) = 457440612631750,
a(23) = 1899305396852550,
a(24) = 8036345146341508,
a(25) = 33405640842497978,
a(26) = 140677778437397166,
a(27) = 585243342550350368,
a(28) = 2456482541007655088,
a(29) = 10225087180260916062,
a(30) = 42821044456634131964,
a(31) = 178310739623644629736,
a(32) = 745570951093506967610,
a(33) = 3105442902100584328222,
a(34) = 12970906450154764259728,
a(35) = 54035954199253554652658,
a(36) = 225534416271325317632922,
a(37) = 939676160294548239862008,
a(38) = 3920063808158344161168316 and
a(n) = 9a(n-1) + 13a(n-2) - 328a(n-3) + 412a(n-4) + 4606a(n-5)
- 11333a(n-6) - 30993a(n-7) + 116054a(n-8) + 91896a(n-9) - 647749a(n-10)
+ 46716a(n-11) + 2183660a(n-12) - 1288032a(n-13) - 4582138a(n-14) + 4554646a(n-15)
+ 5907135a(n-16) - 8495755a(n-17) - 4382389a(n-18) + 9710124a(n-19) + 1499560a(n-20)
- 7358998a(n-21) + 149939a(n-22) + 4121575a(n-23) - 474900a(n-24) - 1872534a(n-25)
+ 392241a(n-26) + 637672a(n-27) - 187640a(n-28) - 147856a(n-29) + 48980a(n-30)
+ 28332a(n-31) - 13032a(n-32) - 216a(n-33) + 756a(n-34) - 864a(n-35)
+ 432a(n-36).

Extensions

Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009

A145402 Number of Hamiltonian paths in P_6 X P_n.

Original entry on oeis.org

1, 32, 336, 3610, 26996, 229348, 1620034, 12071462, 82550864, 572479244, 3808019582, 25304433030, 164452629818, 1062773834046, 6777328517896, 42944798886570, 269706791277978, 1683956271732804, 10445800698724066, 64470330298173718, 395897522698282286
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2009

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Row n=6 of A332307.

Formula

Recurrence:
a(1) = 1,
a(2) = 32,
a(3) = 336,
a(4) = 3610,
a(5) = 26996,
a(6) = 229348,
a(7) = 1620034,
a(8) = 12071462,
a(9) = 82550864,
a(10) = 572479244,
a(11) = 3808019582,
a(12) = 25304433030,
a(13) = 164452629818,
a(14) = 1062773834046,
a(15) = 6777328517896,
a(16) = 42944798886570,
a(17) = 269706791277978,
a(18) = 1683956271732804,
a(19) = 10445800698724066,
a(20) = 64470330298173718,
a(21) = 395897522698282286,
a(22) = 2420749668624155028,
a(23) = 14741571247786709466,
a(24) = 89447754587186752880,
a(25) = 540909580270642216184,
a(26) = 3260975024920004797886,
a(27) = 19603264739475883828250,
a(28) = 117535292246105965344402,
a(29) = 702983297060391275320674,
a(30) = 4195042347314462259387726,
a(31) = 24980876927077036352497846,
a(32) = 148464009996932386776347700,
a(33) = 880707004017612847924259248,
a(34) = 5215420679738577795138490934,
a(35) = 30834760633856575156452382482,
a(36) = 182023498007552212356684065702,
a(37) = 1072972236367114378051620861906,
a(38) = 6316249249418550181323339914312,
a(39) = 37134062572498215721937773361536,
a(40) = 218051132007975699439608964043686,
a(41) = 1278924289541599039994748939762698,
a(42) = 7493036503222763128308036204327090,
a(43) = 43855232912288598091280957567317138,
a(44) = 256423555783154700433887417619421624,
a(45) = 1497918400614505853772957830953728084,
a(46) = 8742417758783236009320473613706164242,
a(47) = 50980753991185396911892104402542597300,
a(48) = 297049767387363496159117043578774571768,
a(49) = 1729483126062016056698341476811920043190,
a(50) = 10061957740464282187277644019379162526042,
a(51) = 58498089362489651097823398471920941376576,
a(52) = 339865477124939798823285486749575905998484,
a(53) = 1973290245189981312766904756242136209547628,
a(54) = 11449989363254903809753791687579863537639720,
a(55) = 66398822904132302559004628977298456048581670,
a(56) = 384828501289828058123250759256477195017480544,
a(57) = 2229130151423292359561588373019497378537925992,
a(58) = 12905482139945922274784040177595268953037073624,
a(59) = 74677955664287358865759062006694983588023954498,
a(60) = 431915003338650359662602332507443189042771688396,
a(61) = 2496891766448143216725256893169977311172853631046,
a(62) = 14427934830066558764818145273279632345264418663372,
a(63) = 83333332226513722399850184075678751393221737658288,
a(64) = 481116428456080286842307490567864574954881424751814,
a(65) = 2776546160822559430889344961278132230852625276213456,
a(66) = 16017287920159426224268234271939994702068236683096952,
a(67) = 92365173104462405690384888989423493983021289807825804,
a(68) = 532437005265425572947418165685557519144407566379788188,
a(69) = 3068133207157035228673454978373479636659816379514577634,
a(70) = 17673852322813372031623824236311245801227744874201505726,
a(71) = 101775693863391958840045017910039901591690632344440430420,
a(72) = 585891711340413211170711537425939102874247508518247861486,
a(73) = 3371750713444109990037815937074468501619571038412857335812,
a(74) = 19398251338784221478821801406177362259804056900563670388806,
a(75) = 111568795166378500936134915873346624423853693744624963980094,
a(76) = 641504617998364195219904173061021504434944205595353347826434,
a(77) = 3687545584633992227002524686539727550037079894386915761864398,
a(78) = 21191373465544351313564008839832091162448835237173224697058876,
a(79) = 121749810823805837552440067819429634654060015970691974416839648,
a(80) = 699307545280466430615312828047674566576438562745475964475819206,
a(81) = 4015706643021649684623778140868657341335861754220230902896008358,
a(82) = 23054334076887448042148612357995502957762056159889516154348493888,
a(83) = 132325303284215702408282792115957397429549544294052046667316933024,
a(84) = 759338970645831460803214242692994927457861759055035612014096168552,
a(85) = 4356458805495707975500370782695432571275910254201456402839379528946,
a(86) = 24988444359124623229107744283670243331720724254595280823991552991342,
a(87) = 143302897934402302882116650096754970142662529653753598056050316770284,
a(88) = 821643145225604646061901571450963815349943846407622019407540341354616,
a(89) = 4710058370878465868959527620867955712709564866281083454929514852175614,
a(90) = 26995186184460869210022072263346128180529395341521512801342492720405190,
a(91) = 154691149154274176889598244154350780798358396944900226522881927956659924,
a(92) = 886269379919108177564957910048500536178199765464663501388525940521397992,
a(93) = 5076789215691537669631156752154537081293123676966123332888421538853542472,
a(94) = 29076191843316870247359219485871781206517693488359111690563685979512648414,
a(95) = 166499432361553419788395309422566612182648297248726066041877141415208791710,
a(96) = 953271470509106369243543177926418983012312059921495414261416813755999417854,
a(97) = 5456959733549075872001836202918114004175794416738296412041775876328443267258,
a(98) = 31233227754487763526217128218054510752349852159351550242516916958065672040014,
a(99) = 178737857335396135203660185992957708646273101994964328871350864581662287530370,
a(100) = 1022707236608978622068432717505248432291457856084068284186568399312410331810432,
a(101) = 5850900383513940954015281710556649941940025405781617483344419093753387423268476,
a(102) = 33468181433150354888869904159114084742899324754034502110186114491065110022122200,
a(103) = 191417198969507319320956593661939446623346523402513085476986313087536811166538340,
a(104) = 1094638153860869625943819331139931221040188338780796056412326567943248472793958802,
a(105) = 6258961737381454735273349796913292077792628144412979236476938336513611161598106484,
a(106) = 35783051128420195492190011308019977156783612836787052747056431871076609691613022114,
a(107) = 204548842309454453799711455219719889854673842730363951318743553233576097299212795442,
a(108) = 1169129062568797296815375785441355037443753860572032657679922002274550424865242854058,
a(109) = 6681512935985943406141450744800377135890211100687009159899691906982317042322945933878,
a(110) = 38179937649795944235517484796055369991364169688382876782534932718852621580273012573744,
a(111) = 218144739304402718284564940871623373450822675202683480252794642639223263633040021474644,
a(112) = 1246247939027939105743088329254213268501907434596141236813634178402005420740542450380628,
a(113) = 7118940481078978742024557769284517384845837781593976384711468911293459232187437799337060,
a(114) = 40661037989804834153982399053378750204939616883988496050793347784222242778432371696180884,
a(115) = 232217375173896510618659626810822796515204095972361739279486086828120095100766924292818294,
a(116) = 1326065718326514761447186285188646030881583149366368223603447347470451333312359990991549570, and
a(n) = 33a(n-1) - 393a(n-2) + 1170a(n-3) + 16754a(n-4) - 164617a(n-5)
+ 168322a(n-6) + 4799822a(n-7) - 23163595a(n-8) - 37721142a(n-9) + 600188299a(n-10)
- 961703543a(n-11) - 7272206245a(n-12) + 30652525711a(n-13) + 27150112504a(n-14) - 406244319529a(n-15)
+ 480827117765a(n-16) + 2953483339807a(n-17) - 8985485328915a(n-18) - 8726841020211a(n-19) + 76359542983674a(n-20)
- 51411687550669a(n-21) - 383142786980539a(n-22) + 769376710831963a(n-23) + 983504604086104a(n-24) - 4703988662134811a(n-25)
+ 1019144283245342a(n-26) + 17567564471258435a(n-27) - 21628609429447372a(n-28) - 39047561134742949a(n-29) + 105510774111014965a(n-30)
+ 21549266915229072a(n-31) - 312479090849851496a(n-32) + 203108186553616885a(n-33) + 603350961560577622a(n-34) - 932935395828098489a(n-35)
- 616494505988563931a(n-36) + 2354671848385377084a(n-37) - 440129521587803560a(n-38) - 4025074369990975795a(n-39) + 3383359137577459958a(n-40)
+ 4524502583073183363a(n-41) - 8084316522568907228a(n-42) - 2000061549048744508a(n-43) + 12710939428078341415a(n-44) - 4333420899536278176a(n-45)
- 14287280072219346302a(n-46) + 12897812849694072664a(n-47) + 10635043132409181759a(n-48) - 20121836247512783757a(n-49) - 2202029990005820642a(n-50)
+ 22530069641124845960a(n-51) - 7891916625415123185a(n-52) - 18920106775493172422a(n-53) + 15668168834118829712a(n-54) + 10967729897465381103a(n-55)
- 18494624437114481188a(n-56) - 2065202418569179366a(n-57) + 16226881294479560421a(n-58) - 4583751833861649976a(n-59) - 10856722405314168245a(n-60)
+ 7442713492418171069a(n-61) + 5123463906533577867a(n-62) - 6977981353490105342a(n-63) - 1007944379242231618a(n-64) + 4832178425594778403a(n-65)
- 966351046903429852a(n-66) - 2583974909058260734a(n-67) + 1371059307640140741a(n-68) + 1025598109986396178a(n-69) - 1054651664720734468a(n-70)
- 224161153417985705a(n-71) + 604947327252110406a(n-72) - 68469700394312381a(n-73) - 269654457078878847a(n-74) + 111988757467772581a(n-75)
+ 87394849743853131a(n-76) - 74501889603770590a(n-77) - 14209663463684077a(n-78) + 34158937071201779a(n-79) - 4582941944236689a(n-80)
- 11444460858858639a(n-81) + 5000095099800696a(n-82) + 2563966731017246a(n-83) - 2451346143506823a(n-84) - 130306682773908a(n-85)
+ 826961146658453a(n-86) - 208781411975348a(n-87) - 184972404092705a(n-88) + 118414958556749a(n-89) + 13754378300437a(n-90)
- 35837701864283a(n-91) + 8178737057414a(n-92) + 5877631567661a(n-93) - 3755468753597a(n-94) - 22088646996a(n-95)
+ 749500012384a(n-96) - 234388451540a(n-97) - 54941696376a(n-98) + 54134588620a(n-99) - 8377519672a(n-100)
- 4771746736a(n-101) + 2428864324a(n-102) - 169609016a(n-103) - 198646044a(n-104) + 72401124a(n-105)
- 3896980a(n-106) - 4402412a(n-107) + 1505256a(n-108) - 152572a(n-109) - 37876a(n-110)
+ 17344a(n-111) - 3248a(n-112) + 336a(n-113) - 16a(n-114).

Extensions

Terms a(20) and beyond from Andrew Howroyd, Feb 10 2020

A358794 Number of Hamiltonian paths in P_7 X P_n.

Original entry on oeis.org

1, 44, 688, 12010, 109722, 1620034, 13535280, 175905310, 1449655468, 17198428572, 142545533336, 1580868297042, 13246916541978, 139620415865920, 1183338916049852, 11997107474280224, 102719325162193010, 1010824101911587178
Offset: 1

Views

Author

Seiichi Manyama, Dec 01 2022

Keywords

Crossrefs

Row n=7 of A332307.

A358795 Number of Hamiltonian paths in P_8 X P_n.

Original entry on oeis.org

1, 58, 1578, 38984, 602804, 12071462, 175905310, 3023313284, 43551685370, 682958971778, 9735477214522, 144397808917246, 2033155413979838, 29105375742858518, 404654754079984324, 5656098437704094140, 77710312229803403554, 1067886114091399967842
Offset: 1

Views

Author

Seiichi Manyama, Dec 01 2022

Keywords

Crossrefs

Row n=8 of A332307.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 27 2023
Showing 1-10 of 13 results. Next