cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A120443 Number of (undirected) Hamiltonian paths in the n X n grid graph.

Original entry on oeis.org

1, 4, 20, 276, 4324, 229348, 13535280, 3023313284, 745416341496, 730044829512632, 786671485270308848, 3452664855804347354220, 16652005717670534681315580, 331809088406733654427925292528, 7263611367960266490262600117251524
Offset: 1

Views

Author

David Bevan, Jul 19 2006

Keywords

Examples

			From _Robert FERREOL_, Apr 03 2019: (Start)
a(3) = 20:
there are 4 paths similar to
  + - + - +
          |
  + - + - +
  |
  + - + - +
8 paths similar to
  + - + - +
  |       |
  +   + - +
  |   |
  +   + - +
and 8 paths similar to
  + - + - +
  |       |
  +   +   +
  |   |   |
  +   + - +
(End)
		

Crossrefs

Formula

a(n) = A096969(n) / 2 for n > 1.

Extensions

More terms from Jesper L. Jacobsen (jesper.jacobsen(AT)u-psud.fr), Dec 12 2007

A332307 Array read by antidiagonals: T(m,n) is the number of (undirected) Hamiltonian paths in the m X n grid graph.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 14, 20, 14, 1, 1, 22, 62, 62, 22, 1, 1, 32, 132, 276, 132, 32, 1, 1, 44, 336, 1006, 1006, 336, 44, 1, 1, 58, 688, 3610, 4324, 3610, 688, 58, 1, 1, 74, 1578, 12010, 26996, 26996, 12010, 1578, 74, 1, 1, 92, 3190, 38984, 109722, 229348, 109722, 38984, 3190, 92, 1
Offset: 1

Views

Author

Andrew Howroyd, Feb 09 2020

Keywords

Examples

			Array begins:
================================================
m\n | 1  2   3     4      5       6        7
----+-------------------------------------------
  1 | 1  1   1     1      1       1        1 ...
  2 | 1  4   8    14     22      32       44 ...
  3 | 1  8  20    62    132     336      688 ...
  4 | 1 14  62   276   1006    3610    12010 ...
  5 | 1 22 132  1006   4324   26996   109722 ...
  6 | 1 32 336  3610  26996  229348  1620034 ...
  7 | 1 44 688 12010 109722 1620034 13535280 ...
  ...
		

Crossrefs

Formula

T(n,m) = T(m,n).

A014585 Number of Hamiltonian paths in a 5 X n grid starting in the lower left corner and ending in the lower right.

Original entry on oeis.org

0, 0, 1, 4, 23, 86, 397, 1584, 6820, 28002, 117852, 488824, 2043133, 8502298, 35463855, 147729456, 615817511, 2566065066, 10694840588, 44568760860, 185743671308, 774073998864, 3225960662493, 13444082934608
Offset: 0

Views

Author

Keywords

Comments

The difference between A014584 and A014585 needs to be clarified. - N. J. A. Sloane, Feb 08 2013
The difference is that A014584 counts paths starting in the LL finishing in the UR. A014585 counts paths starting in the LL finishing the LR. - Ruben Zilibowitz, Jul 05 2015

Crossrefs

Formula

The reference gives a generating function.

Extensions

Definition clarified by Ruben Zilibowitz, Jul 05 2015

A339763 Number of (undirected) Hamiltonian paths in the 5 X n king graph.

Original entry on oeis.org

1, 768, 43676, 4743130, 364618672, 28808442502, 2125185542510, 153198148096800, 10739936528121270, 738599412949227054, 49945111084852186032, 3331294312194018084810, 219599512046978073473186, 14331641424452867055092544, 927231520831830806024847178
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A(start, goal, n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def B(n, k):
        m = k * n
        s = 0
        for i in range(1, m):
            for j in range(i + 1, m + 1):
                s += A(i, j, n, k)
        return s
    def A339763(n):
        return B(n, 5)
    print([A339763(n) for n in range(1, 11)])

A181689 Number of maximal self-avoiding walks from NW to SW corners of a 5 X n grid.

Original entry on oeis.org

1, 0, 8, 0, 86, 0, 948, 0, 10444, 0, 115056, 0, 1267512, 0, 13963520, 0, 153828832, 0, 1694652176, 0, 18669100976, 0, 205667768400, 0, 2265734756752, 0, 24960420526224, 0, 274975961325264, 0, 3029267044091408, 0, 33371858326057936, 0, 367640393509287824, 0, 4050102862690348880, 0, 44617875206245953552, 0, 491531908055724064720, 0, 5414951194338345409680, 0, 59653698888134291413584, 0, 657173751585588653678864, 0, 7239741169830151881286864
Offset: 1

Views

Author

Sean A. Irvine, Nov 17 2010

Keywords

Comments

All even terms are 0.

Crossrefs

Programs

  • Magma
    I:=[1,0,8,0,86,0]; [n le 6 select I[n] else 11*Self(n-2)+2*Self(n-6): n in [1..50]]; // Wesley Ivan Hurt, Apr 10 2016
    
  • Maple
    A181689:=proc(n) option remember:
    if n mod 2 = 0 then 0 elif n=1 then 1 elif n=3 then 8 elif n=5 then 86 else 11*a(n-2)+2*a(n-6); fi; end: seq(A181689(n), n=1..50); # Wesley Ivan Hurt, Apr 10 2016
  • Mathematica
    CoefficientList[Series[(1 - 3*x^2 - 2*x^4)/(1 - 11*x^2 - 2*x^6), {x, 0, 50}], x] (* Wesley Ivan Hurt, Apr 10 2016 *)
  • PARI
    x='x+O('x^99); Vec(x*(1-3*x^2-2*x^4)/(1-11*x^2-2*x^6)) \\ Altug Alkan, Apr 11 2016

Formula

G.f.: x*(1 - 3*x^2 - 2*x^4)/(1 - 11*x^2 - 2*x^6).
a(n) = 11*a(n-2) + 2*a(n-6) for n>6. - Wesley Ivan Hurt, Apr 10 2016
Showing 1-5 of 5 results.