cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145471 Primes p such that (5+p)/2 is prime.

Original entry on oeis.org

5, 17, 29, 41, 53, 89, 101, 113, 137, 173, 197, 257, 269, 293, 353, 389, 449, 461, 509, 521, 557, 617, 701, 761, 773, 797, 857, 881, 929, 953, 977, 1013, 1109, 1181, 1193, 1229, 1277, 1289, 1301, 1361, 1433, 1481, 1613, 1637, 1709, 1721, 1877, 1889, 1901
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Comments

All these primes are congruent to 1 mod 4 and to 5 mod 12.

Crossrefs

Subsequence of A040117. - Zak Seidov, Feb 21 2016

Programs

  • Magma
    [p: p in PrimesInInterval(3,2000) | IsPrime((5+p) div 2)]; // Vincenzo Librandi, Feb 25 2016
  • Maple
    select(t -> isprime(t) and isprime((t+5)/2), [seq(i, i=5..1000, 12)]); # Robert Israel, Feb 24 2016
  • Mathematica
    aa = {}; k = 5; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, Prime[n]]], {n, 1, 500}];aa
    Select[Prime[Range[500]],PrimeQ[(5+#)/2]&]  (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    forprime(p=2,1e4,if(p%12!=5,next);if(isprime(p\2+3),print1(p", "))) \\ Charles R Greathouse IV, Jul 16 2011
    

Formula

a(n) = 2*A063909(n)-5. - Robert Israel, Feb 24 2016