A302329 a(0)=1, a(1)=61; for n>1, a(n) = 62*a(n-1) - a(n-2).
1, 61, 3781, 234361, 14526601, 900414901, 55811197261, 3459393815281, 214426605350161, 13290990137894701, 823826961944121301, 51063980650397625961, 3165142973362708688281, 196187800367837541047461, 12160478479832564836254301, 753753477949251182306719201
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..500
- Christian Aebi and Grant Cairns, Less than Equable Triangles on the Eisenstein lattice, arXiv:2312.10866 [math.CO], 2023.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (62,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{62, -1}, {1, 61}, 20]
-
PARI
x='x+O('x^99); Vec((1-x)/(1-62*x+x^2)) \\ Altug Alkan, Apr 06 2018
Formula
G.f.: (1 - x)/(1 - 62*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(4))/4.
a(n) = ((4 + sqrt(15))^(2*n + 1) + 1/(4 + sqrt(15))^(2*n + 1))/8.
a(n) = (1/4)*T(2*n+1, 4), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022
E.g.f.: exp(31*x)*(4*cosh(8*sqrt(15)*x) + sqrt(15)*sinh(8*sqrt(15)*x))/4. - Stefano Spezia, Jul 25 2025
Comments