A145654 Partial sums of A000918, starting from index 1.
0, 2, 8, 22, 52, 114, 240, 494, 1004, 2026, 4072, 8166, 16356, 32738, 65504, 131038, 262108, 524250, 1048536, 2097110, 4194260, 8388562, 16777168, 33554382, 67108812, 134217674, 268435400, 536870854, 1073741764, 2147483586
Offset: 1
Examples
For n=7, a(7) = 6*2 + 5*2^2 + 4*2^3 + 3*2^4 + 2*2^5 + 1*2^6 = 240. - _Bruno Berselli_, Feb 10 2014 From _Bruno Berselli_, Jul 17 2018: (Start) Row sums of the triangle: 0 ...................................... 0 1, 1 .................................. 2 3, 2, 3 .............................. 8 6, 5, 5, 6 .......................... 22 10, 11, 10, 11, 10 ...................... 52 15, 21, 21, 21, 21, 15 .................. 114 21, 36, 42, 42, 42, 36, 21 .............. 240 28, 57, 78, 84, 84, 78, 57, 28 .......... 494, etc. (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Haskell
a145654 n = a145654_list !! (n-1) a145654_list = scanl1 (+) $ tail a000918_list -- Reinhard Zumkeller, Nov 06 2013
-
Mathematica
Accumulate[2^Range[30] - 2] (* or *) LinearRecurrence[{4, -5, 2}, {0, 2, 8}, 30] (* Harvey P. Dale, Jul 15 2017 *)
Formula
a(n) = Sum_{i=1..n} A000918(i).
a(n+1) - a(n) = A000918(n+1).
a(n) = A005803(n+1). - R. J. Mathar, Oct 21 2008
From Colin Barker, Jan 11 2012: (Start)
a(n) = 2*(-1 + 2^n - n).
G.f.: 2*x^2/((1-x)^2*(1-2*x)). (End)
a(n+1) = A121173(2*n). - Reinhard Zumkeller, Nov 06 2013
a(n) = Sum_{i=1..n-1} (n-i)*2^i with a(1)=0. - Bruno Berselli, Feb 10 2014
a(n) = 2 * A000295(n). - Alois P. Heinz, May 28 2018
Extensions
Edited by R. J. Mathar, Oct 21 2008