A145855 Number of n-element subsets of {1,2,...,2n-1} whose elements sum to a multiple of n.
1, 1, 4, 9, 26, 76, 246, 809, 2704, 9226, 32066, 112716, 400024, 1432614, 5170604, 18784169, 68635478, 252085792, 930138522, 3446167834, 12815663844, 47820414962, 178987624514, 671825133644, 2528212128776, 9536894664376
Offset: 1
Keywords
Examples
a(3)=4 because, of the 10 3-element subsets of 1..7, only {1,2,3}, {1,3,5}, {2,3,4} and {3,4,5} have sums that are multiples of 3. L.g.f.: L(x) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 26*x^5/5 + 76*x^6/6 + 246*x^7/7 +... where exponentiation yields the g.f. of A000571: exp(L(x)) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 22*x^6 + 59*x^7 + 167*x^8 +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1669 (terms 1..200 from T. D. Noe)
- Max Alekseyev, Proof of Jovovic's formula, 2008.
- Michal Bassan, Serte Donderwinkel, and Brett Kolesnik, Tournament score sequences, Erdős-Ginzburg-Ziv numbers, and the Lévy-Khintchine method, arXiv:2407.01441 [math.CO], 2024. See p. 7.
- Shane Chern, An extension of a formula of Jovovic, Integers (2019) Vol. 19, Article A47.
- Anders Claesson, Mark Dukes, Atli Fannar Franklín, and Sigurður Örn Stefánsson, Counting tournament score sequences, arXiv:2209.03925 [math.CO], 2022.
- P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10 (1961).
- Steven Rayan, Aspects of the topology and combinatorics of Higgs bundle moduli spaces, arXiv:1809.05732 [math.AG], 2018.
- Mithat Ünsal, Graded Hilbert spaces, quantum distillation and connecting SQCD to QCD, arXiv:2104.12352 [hep-th], 2021.
Programs
-
Mathematica
Table[Length[Select[Plus@@@Subsets[Range[2n-1],{n}], Mod[ #,n]==0&]], {n,10}] Table[d=Divisors[n]; Sum[(-1)^(n+d[[i]]) EulerPhi[n/d[[i]]] Binomial[2d[[i]], d[[i]]]/2/n, {i,Length[d]}], {n,30}] (* T. D. Noe, Oct 24 2008 *)
-
PARI
{a(n)=sumdiv(n, d, (-1)^(n+d)*eulerphi(n/d)*binomial(2*d, d)/(2*n))}
-
PARI
{A227532(n, k)=local(G=1); for(i=1, n, G=1+x*subst(G, x, q*x)*G +x*O(x^n)); n*polcoeff(polcoeff(log(G), n, x), k, q)} {a(n)=sum(k=0,n\2, A227532(n, n*k))} \\ Paul D. Hanna, Jul 17 2013
Formula
a(n) = (1/(2*n))*Sum_{d|n} (-1)^(n+d)*phi(n/d)*binomial(2*d,d). Conjectured by Vladeta Jovovic, Oct 22 2008; proved by Max Alekseyev, Oct 23 2008 (see link).
a(2n+1) = A003239(2n+1) and a(2n) = A003239(2n) - A003239(d), where d is the largest odd divisor of n. - T. D. Noe, Oct 24 2008
a(n) = Sum_{d|n} (-1)^(n+d)*d*A131868(d). - Vladeta Jovovic, Oct 28 2008
a(n) = Sum_{k=0..[n/2]} A227532(n,n*k), where A227532 is the logarithmic derivative, wrt x, of the g.f. G(x,q) = 1 + x*G(q*x,q)*G(x,q) of triangle A227543. - Paul D. Hanna, Jul 17 2013
Logarithmic derivative of A000571, the number of different scores that are possible in an n-team round-robin tournament. - Paul D. Hanna, Jul 17 2013
G.f.: -Sum_{m >= 1} (phi(m)/m) * log((1 + sqrt(1 + 4*(-y)^m))/2). - Petros Hadjicostas, Jul 15 2019
a(n) ~ 2^(2*n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 28 2023
Extensions
Extension T. D. Noe, Oct 24 2008
Comments