A146014
Triangle read by rows, square of A145975.
Original entry on oeis.org
1, 0, 1, -1, 2, 1, -1, 3, 1, 0, -2, 5, 2, 0, 0, 3, 3, 0, 0, 0, 1, 7, 2, 0, 0, 1, 0, 19, -3, 6, 0, 0, 4, 0, 1, 21, 0, -5, 0, 0, 5, 0, 1, 0, 43, -10, -14, 0, 0, 9, 0, 2, 0, 0, 62, -16, -20, 0, 0, 13, 0, 3, 0, 0, 0, 106, -38, -38, 0, 0, 21, 0, 5, 0, 0, 0, 0, 70, 2, -10, 0, 0, 14, 0, 0, 0, 0, 0, 0, 1
Offset: 0
First few rows of the triangle =
1;
0, 1;
-1, 2, 1;
-1, 3, 1, 0;
-2, 5, 2, 0, 0;
3, 3, 0, 0, 0, 1;
1, 7, 2, 0, 0, 1, 0;
19, -3, -6, 0, 0, 4, 0, 1;
21, 0, -5, 0, 0, 5, 0, 1, 0;
43, -10, -14, 0, 0, 9, 0, 2, 0, 0;
62, -16, -20, 0, 0, 13, 0, 3, 0, 0, 0;
106, -38, -38, 0, 0, 21, 0, 5, 0, 0, 0, 0;
70, 2, -10, 0, 0, 14, 0, 0, 0, 0, 0, 0, 1;
154, -42, -45, 0, 0, 29, 0, 4, 0, 0, 0, 0, 1, 0;
...
A010815
From Euler's Pentagonal Theorem: coefficient of q^n in Product_{m>=1} (1 - q^m).
Original entry on oeis.org
1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
G.f. = 1 - x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + x^26 - x^35 - x^40 + ...
G.f. = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + q^529 + q^625 + ...
From _Seiichi Manyama_, Mar 04 2017: (Start)
G.f.
= 1 + (-x - 3*x^2/2 - 4*x^3/3 - 7*x^4/4 - 6*x^5/5 - ...)
+ 1/2 * (x^2 + 3*x^3 + 59*x^4/12 + 15*x^5/2 + ...)
+ 1/6 * (-x^3 - 9*x^4/2 - 43*x^5/4 - ...)
+ 1/24 * (x^4 + 6*x^5 + ...)
+ 1/120 * (-x^5 - ...)
+ ...
= 1 - x - x^2 + x^5 + .... (End)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825.
- B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054. See page 3.
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, Problem 18.
- A. Cayley, An Elementary Treatise on Elliptic Functions, G. Bell and Sons, London, 1895, p. 295, Art. 387.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 104, [5g].
- N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (32.12) and (32.13).
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 353.
- B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 70.
- A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 1002 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825.
- George E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573.
- A. A. Bennett, Problem 3553, Amer. Math. Monthly, 39 (1932), 300.
- M. Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389.
- D. Bump, Automorphic Forms and Representations, Cambr. Univ. Press, 1997, p. 29.
- S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares, Discrete Math. 274 (2004), no. 1-3, 9-24. See P(q).
- Leonhard Euler, The expansion of the infinite product (1-x)(1-xx)(1-x^3)..., arXiv:math/0411454 [math.HO], 2004.
- Leonhard Euler, Evolutio producti infiniti (1-x)(1-xx)(1-x^3)...
- S. R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
- Fern Gossow, Lyndon-like cyclic sieving and Gauss congruence, arXiv:2410.05678 [math.CO], 2024. See p. 26.
- H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy)
- H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
- K. Harada, "Moonshine" of Finite Groups, European Math. Soc., 2010, p. 17.
- Milan Janjic, A Generating Function for Numbers of Insets, Journal of Integer Sequences, 17, 2014, #14.9.7.
- Vaclav Kotesovec, The integration of q-series
- S. C. Milne, Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions and Schur functions, Ramanujan J., 6 (2002), 7-149. (See (1.10).)
- Tim Silverman, Counting Cliques in Finite Distant Graphs, arXiv preprint arXiv:1612.08085 [math.CO], 2016.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Dedekind Eta Function
- Eric Weisstein's World of Mathematics, Pentagonal Number Theorem
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Eric Weisstein's World of Mathematics, Quintuple Product Identity
- Don Zagier, Elliptic modular forms and their applications in "The 1-2-3 of modular forms", Springer-Verlag, 2008.
- Robert M. Ziff, On Cardy's formula for the critical crossing probability in 2d percolation, J. Phys. A. 28, 1249-1255 (1995).
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
-
# DedekindEta is defined in A000594.
A010815List(len) = DedekindEta(len, 1)
A010815List(93) |> println # Peter Luschny, Mar 09 2018
-
function A010815(n)
r = 24 * n + 1
m = isqrt(r)
m * m != r && return 0
iseven(div(m + m % 6, 6)) ? 1 : -1
end # Peter Luschny, Sep 09 2021
-
Coefficients(&*[1-x^m:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Jan 15 2017
-
A010815 := mul((1-x^m), m=1..100);
A010815 := proc(n) local x,m;
product(1-x^m,m=1..n) ;
expand(%) ;
coeff(%,x,n) ;
end proc: # R. J. Mathar, Jun 18 2016
A010815 := proc(n) 24*n + 1; if issqr(%) then sqrt(%);
(-1)^irem(iquo(% + irem(%, 6), 6), 2) else 0 fi end: # Peter Luschny, Oct 02 2022
-
a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Nov 15 2011 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^(3/2)], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> -x^(1/2)}, {x, 0, n}]]; (* Michael Somos, Nov 15 2011 *)
CoefficientList[ Series[ Product[(1 - x^k), {k, 1, 70}], {x, 0, 70}], x]
(* hooklength[ ] cfr A047874 *) Table[ Tr[ ( Times@@(1-2/Flatten[hooklength[ # ]]^2) )&/@ Partitions[n] ],{n,26}] (* Wouter Meeussen, Sep 16 2010 *)
CoefficientList[ Series[ QPochhammer[q], {q, 0, 100}], q] (* Jean-François Alcover, Dec 04 2013 *)
a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ[m], KroneckerSymbol[ 12, m], 0]]; (* Michael Somos, Jun 04 2015 *)
nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = -1; Do[Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, May 04 2018 *)
Table[m = (1 + Sqrt[1 + 24*k])/6; If[IntegerQ[m], (-1)^m, 0] + If[IntegerQ[m - 1/3], (-1)^(m - 1/3), 0], {k, 0, 100}] (* Vaclav Kotesovec, Jul 09 2020 *)
-
{a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n)), n))}; /* Michael Somos, Jun 05 2002 */
-
{a(n) = polcoeff( prod( k=1, n, 1 - x^k, 1 + x * O(x^n)), n)}; /* Michael Somos, Nov 19 2011 */
-
{a(n) = if( issquare( 24*n + 1, &n), kronecker( 12, n))}; /* Michael Somos, Feb 26 2006 */
-
{a(n) = if( issquare( 24*n + 1, &n), if( (n%2) && (n%3), (-1)^round( n/6 )))}; /* Michael Somos, Feb 26 2006 */
-
{a(n) = my(A); if( n<0, 0, A = 1 + O(x^n); polcoeff( sum( k=1, (sqrtint( 8*n + 1)-1) \ 2, A *= x^k / (x^k - 1) + x * O(x^(n - (k^2-k)/2)), 1), n))}; /* Michael Somos, Aug 18 2006 */
-
lista(nn) = {q='q+O('q^nn); Vec(eta(q))} \\ Altug Alkan, Mar 21 2018
-
from math import isqrt
def A010815(n):
m = isqrt(24*n+1)
return 0 if m**2 != 24*n+1 else ((-1)**((m-1)//6) if m % 6 == 1 else (-1)**((m+1)//6)) # Chai Wah Wu, Sep 08 2021
A027293
Triangular array given by rows: P(n,k) is the number of partitions of n that contain k as a part.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 3, 2, 1, 1, 7, 5, 3, 2, 1, 1, 11, 7, 5, 3, 2, 1, 1, 15, 11, 7, 5, 3, 2, 1, 1, 22, 15, 11, 7, 5, 3, 2, 1, 1, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1, 77
Offset: 1
The triangle P begins (with offsets 0 it is Pa):
n \ k 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 1 1
3: 2 1 1
4: 3 2 1 1
5: 5 3 2 1 1
6: 7 5 3 2 1 1
7: 11 7 5 3 2 1 1
8: 15 11 7 5 3 2 1 1
9: 22 15 11 7 5 3 2 1 1
10: 30 22 15 11 7 5 3 2 1 1
... reformatted by _Wolfdieter Lang_, Apr 14 2021
-
f[n_] := Block[{t = Flatten[Union /@ IntegerPartitions@n]}, Table[Count[t, i], {i, n}]]; Array[f, 13] // Flatten
t[n_, k_] := PartitionsP[n-k]; Table[t[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 24 2014 *)
Showing 1-3 of 3 results.
Comments