A146086 Number of n-digit numbers with each digit odd where the digits 1 and 3 occur an even number of times.
3, 11, 45, 197, 903, 4271, 20625, 100937, 498123, 2470931, 12295605, 61300877, 305972943, 1528270391, 7636568985, 38168496017, 190799433363, 953868026651, 4768952712765, 23843601302357, 119214519727383, 596062138283711, 2980279310358945, 14901302408615897
Offset: 1
Examples
For n=2 the a(2)=11 numbers are 11, 33, 55, 57, 59, 75, 77, 79, 95, 97, 99.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (9,-23,15).
Programs
-
Magma
[(5^n+2*3^n+1)/4: n in [1..30]]; // Vincenzo Librandi, Dec 31 2013
-
Mathematica
Table[(5^n + 2 3^n + 1)/4, {n, 1, 30}] (* Vincenzo Librandi, Dec 31 2013 *) LinearRecurrence[{9,-23,15},{3,11,45},30] (* Harvey P. Dale, Dec 15 2014 *)
-
PARI
a(n)=(5^n+2*3^n+1)/4; \\ Michel Marcus, Aug 22 2013
Formula
a(n) = (5^n+2*3^n+1)/4.
From Colin Barker, Dec 31 2013: (Start)
a(n) = 9*a(n-1)-23*a(n-2)+15*a(n-3).
G.f.: -x*(15*x^2-16*x+3) / ((x-1)*(3*x-1)*(5*x-1)). (End)
E.g.f.: exp(3*x)*(cosh(x))^2 - 1. - G. C. Greubel, Jan 31 2016
Extensions
More terms from Colin Barker, Dec 31 2013
Comments