cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118292 Decimal expansion of (Gamma(1/6)*Gamma(1/3))/(3*sqrt(Pi)).

Original entry on oeis.org

2, 8, 0, 4, 3, 6, 4, 2, 1, 0, 6, 5, 0, 9, 0, 8, 5, 2, 2, 3, 5, 0, 0, 3, 8, 1, 5, 8, 1, 0, 0, 5, 8, 8, 2, 7, 0, 9, 2, 6, 0, 4, 4, 4, 1, 0, 8, 4, 7, 9, 7, 2, 1, 9, 2, 3, 6, 3, 9, 8, 7, 9, 7, 4, 1, 5, 2, 5, 6, 9, 5, 3, 1, 9, 6, 3, 6, 0, 6, 5, 9, 2, 1, 4, 1, 7, 0, 4, 5, 3, 2, 9, 7, 0, 0, 4, 9, 5, 6, 9, 4, 1, 1, 0, 3
Offset: 1

Views

Author

Eric W. Weisstein, Apr 22 2006

Keywords

Comments

General formula: Integral_{x=0..1} (1+x^(3n))/sqrt(1-x^3) dx = G_3 * k_n = G_3*A146751(n)/A146752(n) = A118292*A146751(n)/A146752(n) where G_3 = (Gamma(1/3)^3)/(2^(1/3)*sqrt(3)*Pi) is the number in the present entry. For numerators of k_n see A146752, for denominators of k_n see A146753. - Artur Jasinski
gamma(1/6)*gamma(1/3)/(3*sqrt(Pi)) = gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi). - Harry J. Smith, May 09 2009

Examples

			2.8043642106509085223500381581005882709260444108....
		

Crossrefs

Cf. A146752, A146753, A160323 (continued fraction).

Programs

  • Mathematica
    RealDigits[(Gamma[1/3]^3)/(2^(1/3) Sqrt[3] Pi), 10, 200] (* Artur Jasinski*)
  • PARI
    allocatemem(932245000); default(realprecision, 4080); x=gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi); for (n=1, 4000, d=floor(x); x=(x-d)*10; write("b118292.txt", n, " ", d)) \\ Harry J. Smith, Jun 20 2009
    
  • PARI
    3/hypergeom([1/3,1/6],[3/2],1) \\ Charles R Greathouse IV, Aug 29 2025

Formula

Equals A073005^3 / (A002194*A002580*A000796) [see Vidunas, arXiv:math.CA/0403510]. - R. J. Mathar, Nov 30 2008
Equals 3/hypergeom([1/3, 1/6], [3/2], 1) = A290570*A005480. - Peter Bala, Mar 02 2022

Extensions

Edited by N. J. A. Sloane, Nov 16 2008 at the suggestion of R. J. Mathar

A146752 a(n) = numerator((1/2)*(1 + Product_{k=0..n-1} 2*(1 + 3*k)/(5 + 6*k))).

Original entry on oeis.org

1, 7, 71, 1159, 5197, 148025, 730141, 29616293, 125438657, 1319937329, 77390680651, 76972298827, 319946679037, 3504590799071, 289784158718029, 25703039917515461, 1114069690728835, 112203290640603311
Offset: 0

Views

Author

Artur Jasinski, Nov 01 2008

Keywords

Comments

Previous name was: a(n) is the numerator of k_n such that Integral_{x=0..1} ((1+x^(3n))/sqrt(1-x^3)) dx = k_n*Gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi) for n >= 0.
General formula: Integral_{x=0..1} ((1+x^(3n))/sqrt(1-x^3)) dx = G_3 * k_n = G_3*A146752(n)/A146753(n) = A118292*A146752(n)/A146753(n) where G_3 = (Gamma(1/3)^3)/(2^(1/3)*sqrt(3)*Pi).

Crossrefs

Cf. A146753 (denominator), A118292 (G_3).

Programs

  • Mathematica
    Table[Numerator[(1/2) (1 + Product[(2 (1 + 3 k))/(5 + 6 k), {k, 0, n - 1}])], {n, 0, 30}]

Formula

a(n) = numerator((1/2)*(1 + Product_{k=0..n-1} 2*(1 + 3*k)/(5 + 6*k))).

Extensions

Simpler name (using given formula) from Joerg Arndt, Sep 24 2022
Showing 1-2 of 2 results.