cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A073005 Decimal expansion of Gamma(1/3).

Original entry on oeis.org

2, 6, 7, 8, 9, 3, 8, 5, 3, 4, 7, 0, 7, 7, 4, 7, 6, 3, 3, 6, 5, 5, 6, 9, 2, 9, 4, 0, 9, 7, 4, 6, 7, 7, 6, 4, 4, 1, 2, 8, 6, 8, 9, 3, 7, 7, 9, 5, 7, 3, 0, 1, 1, 0, 0, 9, 5, 0, 4, 2, 8, 3, 2, 7, 5, 9, 0, 4, 1, 7, 6, 1, 0, 1, 6, 7, 7, 4, 3, 8, 1, 9, 5, 4, 0, 9, 8, 2, 8, 8, 9, 0, 4, 1, 1, 8, 8, 7, 8, 9, 4, 1, 9, 1, 5
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Nesterenko proves that this constant is transcendental (he cites Chudnovsky as the first to show this); in fact it is algebraically independent of Pi and exp(sqrt(3)*Pi) over Q. - Charles R Greathouse IV, Nov 11 2013

Examples

			Gamma(1/3) = 2.6789385347077476336556929409746776441286893779573011009...
		

References

  • H. B. Dwight, Tables of Integrals and other Mathematical Data. 860.18, 860.19 in Definite Integrals. New York, U.S.A.: Macmillan Publishing, 1961, p. 230.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:8 at page 413.

Crossrefs

Programs

  • Magma
    R:= RealField(100); SetDefaultRealField(R); Gamma(1/3); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[ N[ Gamma[1/3], 110]][[1]]
  • PARI
    default(realprecision, 1080); x=gamma(1/3); for (n=1, 1000, d=floor(x); x=(x-d)*10; write("b073005.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
    

Formula

this * A073006 = A186706. - R. J. Mathar, Jan 15 2021
From Amiram Eldar, Jun 25 2021: (Start)
Equals 2^(7/9) * Pi^(1/3) * K((sqrt(3)-1)/(2*sqrt(2)))^(1/3)/3^(1/12), where K is the complete elliptic integral of the first kind.
Equals 2^(7/9) * Pi^(2/3) /(AGM(2, sqrt(2+sqrt(3)))^(1/3) * 3^(1/12)), where AGM is the arithmetic-geometric mean. (End)
From Andrea Pinos, Aug 12 2023: (Start)
Equals Integral_{x=0..oo} 3*exp(-(x^3)) dx = 3*A202623.
General result: Gamma(1/n) = Integral_{x=0..oo} n*exp(-(x^n)) dx. (End)
Equals 3*A202623 = exp(A256165). - Hugo Pfoertner, Jun 28 2024
Equals (2^(1/3)*Pi*C*3^(1/2))^(1/3), where C = A118292 = Integral {0..1} 2/sqrt(1-x^3) is the transcendental butterfly constant. - Jan Lügering, Feb 08 2025

A146752 a(n) = numerator((1/2)*(1 + Product_{k=0..n-1} 2*(1 + 3*k)/(5 + 6*k))).

Original entry on oeis.org

1, 7, 71, 1159, 5197, 148025, 730141, 29616293, 125438657, 1319937329, 77390680651, 76972298827, 319946679037, 3504590799071, 289784158718029, 25703039917515461, 1114069690728835, 112203290640603311
Offset: 0

Views

Author

Artur Jasinski, Nov 01 2008

Keywords

Comments

Previous name was: a(n) is the numerator of k_n such that Integral_{x=0..1} ((1+x^(3n))/sqrt(1-x^3)) dx = k_n*Gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi) for n >= 0.
General formula: Integral_{x=0..1} ((1+x^(3n))/sqrt(1-x^3)) dx = G_3 * k_n = G_3*A146752(n)/A146753(n) = A118292*A146752(n)/A146753(n) where G_3 = (Gamma(1/3)^3)/(2^(1/3)*sqrt(3)*Pi).

Crossrefs

Cf. A146753 (denominator), A118292 (G_3).

Programs

  • Mathematica
    Table[Numerator[(1/2) (1 + Product[(2 (1 + 3 k))/(5 + 6 k), {k, 0, n - 1}])], {n, 0, 30}]

Formula

a(n) = numerator((1/2)*(1 + Product_{k=0..n-1} 2*(1 + 3*k)/(5 + 6*k))).

Extensions

Simpler name (using given formula) from Joerg Arndt, Sep 24 2022

A146753 a(n) = denominator((1/2)*(1 + Product_{k=0..n-1} 2*(1 + 3*k)/(5 + 6*k))).

Original entry on oeis.org

1, 10, 110, 1870, 8602, 249458, 1247290, 51138890, 218502530, 2316126818, 136651482262, 136651482262, 570720896506, 6277929861566, 521068178509978, 46375067887388042, 2016307299451654, 203647037244617054
Offset: 0

Views

Author

Artur Jasinski, Nov 01 2008

Keywords

Comments

Previous name was: a(n)=denominator of k_n such that Integrate[(1+x^(3n))/Sqrt[1-x^3],{x,0,1}]= k_n*(Gamma[1/3]^3)/(2^(1/3)Sqrt[3]Pi) where n >= 0.
General formula: Integral_{x=0..1} ((1+x^(3n))/sqrt(1-x^3)) dx = G_3 * k_n = G_3*A146752(n)/A146753(n) = A118292*A146752(n)/A146753(n) where G_3 = (Gamma(1/3)^3)/(2^(1/3)*sqrt(3)*Pi).

Crossrefs

Cf. A146752 (numerator), A118292 (G_3).

Programs

  • Mathematica
    Table[Denominator[(1/2) (1 + Product[(2 (1 + 3 k))/(5 + 6 k), {k, 0, n - 1}])], {n, 0, 30}]

Formula

a(n) = denominator((1/2)*(1 + Product_{k=0..n-1} 2*(1 + 3*k)/(5 + 6*k))).

Extensions

New name (using given formula) from Joerg Arndt, Sep 24 2022

A160323 Continued fraction for (Gamma(1/6)*Gamma(1/3))/(3*sqrt(Pi)).

Original entry on oeis.org

2, 1, 4, 8, 1, 27, 1, 19, 1, 25, 3, 6, 4, 1, 37, 1, 1, 7, 1, 75, 1, 13, 1, 2, 6, 1, 16, 1, 6, 2, 1, 1, 3, 1, 5, 3, 36, 1, 4, 17, 1, 2, 1, 1, 1, 12, 1, 1, 7, 1, 3, 1, 10, 13, 3, 7, 3, 1, 9, 206, 1, 1, 1, 3, 34, 1, 10, 1, 1, 7, 1, 705, 1, 4, 4, 1, 1, 2, 1, 4, 2, 2, 1, 3, 8, 1, 19, 2, 1, 11, 3, 1, 725, 1, 37
Offset: 0

Views

Author

Harry J. Smith, May 09 2009

Keywords

Comments

gamma(1/6)*gamma(1/3)/(3*sqrt(Pi)) = gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi).

Examples

			2.804364210650908522350038158... = 2 + 1/(1 + 1/(4 + 1/(8 + 1/(1 + ...)))).
		

Crossrefs

Cf. A118292 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction((Gamma(1/6)*Gamma(1/3))/(3*Sqrt(Pi(R)))); // G. C. Greubel, Oct 05 2018
  • Mathematica
    ContinuedFraction[(Gamma[1/6]*Gamma[1/3])/(3*Sqrt[Pi]), 100] (* G. C. Greubel, Oct 05 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 4100); x=gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi); x=contfrac(x); for (n=1, 4000, write("b160323.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Jun 20 2009
    

Extensions

Offset changed by Andrew Howroyd, Aug 09 2024

A118811 Decimal expansion of arc length of the (first) butterfly curve.

Original entry on oeis.org

9, 0, 1, 7, 3, 5, 6, 9, 8, 5, 6, 5, 4, 6, 9, 7, 6, 9, 1, 8, 6, 0, 9, 6, 3, 4, 0, 2, 9, 7, 0, 0, 7, 7, 0, 0, 3, 9, 3, 0, 5, 9, 7, 1, 8, 6, 1, 3, 0, 9, 8, 0, 1, 9, 8, 9, 3, 4, 3, 3, 8, 3, 3, 7, 6, 1, 7, 1, 5, 4, 4, 6, 8, 0, 2, 0, 3, 4, 6, 9, 4, 5, 5, 7, 2, 9, 6, 9, 7, 0, 5, 9, 3, 1, 0, 3, 5, 8, 6
Offset: 1

Views

Author

Eric W. Weisstein, Apr 30 2006

Keywords

Examples

			9.0173569856546976918...
		

Crossrefs

Cf. A118292.

Programs

  • Mathematica
    eq = y^6 == x^2-x^6; f[x_] = y /. Solve[eq, y][[2]]; g[y_] = x /. Solve[eq, x][[2]]; h[y_] = x /. Solve[eq, x][[4]]; x1 = 3/8; y1 = f[x1]; x2 = 7/8; y2 = f[x2]; ni[a_, b_] := NIntegrate[a, b, WorkingPrecision -> 120]; i1 = ni[Sqrt[1+f'[x]^2], {x, x1, x2}]; i2 = ni[Sqrt[1+g'[y]^2], {y, 0, y2}]; i3 = ni[Sqrt[1+h'[y]^2], {y, 0, y1}]; Take[RealDigits[4(i1+i2+i3)][[1]], 99](* Jean-François Alcover, Jan 19 2012 *)
  • PARI
    4*intnum(x=0,1,sqrt(1+(x/3-x^5)^2/(x^2-x^6)^(5/3))) \\ Charles R Greathouse IV, Jan 17 2012

Extensions

Last digit corrected by Eric W. Weisstein, Jan 18 2012

A371859 Decimal expansion of Integral_{x=0..oo} 1 / sqrt(1 + x^5) dx.

Original entry on oeis.org

1, 5, 4, 9, 6, 9, 6, 2, 7, 7, 7, 4, 7, 3, 5, 3, 0, 2, 9, 5, 6, 2, 1, 9, 5, 3, 8, 3, 1, 7, 0, 8, 8, 2, 1, 2, 8, 9, 1, 9, 6, 9, 7, 5, 8, 2, 2, 0, 1, 1, 7, 1, 6, 5, 4, 0, 0, 9, 0, 5, 3, 6, 0, 9, 7, 7, 2, 7, 3, 1, 4, 7, 8, 0, 7, 1, 4, 9, 7, 9, 8, 2, 2, 6, 8, 7, 5, 2, 8, 3, 4, 0, 5, 3, 0, 6, 5, 7, 6, 9, 7, 1, 7, 6, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			1.54969627774735302956219538317088212891969758...
		

Crossrefs

Decimal expansions of Integral_{x=0..oo} 1 / sqrt(1 + x^k) dx: A118292 (k=3), A093341 (k=4), this sequence (k=5).

Programs

  • Mathematica
    RealDigits[Gamma[3/10] Gamma[6/5]/Sqrt[Pi], 10, 105][[1]]
    RealDigits[2^(2/5) * Gamma[1/5]^2 / (5*GoldenRatio*Gamma[2/5]), 10, 105][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)

Formula

Equals Gamma(3/10) * Gamma(6/5) / sqrt(Pi).
Equals 2^(2/5) * Gamma(1/5)^2 / (5 * phi * Gamma(2/5)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Apr 09 2024

A371860 Decimal expansion of Integral_{x=0..1} 1 / sqrt(1 - x^3) dx.

Original entry on oeis.org

1, 4, 0, 2, 1, 8, 2, 1, 0, 5, 3, 2, 5, 4, 5, 4, 2, 6, 1, 1, 7, 5, 0, 1, 9, 0, 7, 9, 0, 5, 0, 2, 9, 4, 1, 3, 5, 4, 6, 3, 0, 2, 2, 2, 0, 5, 4, 2, 3, 9, 8, 6, 0, 9, 6, 1, 8, 1, 9, 9, 3, 9, 8, 7, 0, 7, 6, 2, 8, 4, 7, 6, 5, 9, 8, 1, 8, 0, 3, 2, 9, 6, 0, 7, 0, 8, 5, 2, 2, 6, 6, 4, 8, 5, 0, 2, 4, 7, 8, 4, 7, 0, 5, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			1.4021821053254542611750190790502941354630222...
		

Crossrefs

Decimal expansions of Integral_{x=0..1} 1 / sqrt(1 - x^k) dx: A019669 (k=2), this sequence (k=3), A085565 (k=4).

Programs

  • Mathematica
    RealDigits[Sqrt[Pi] Gamma[4/3]/Gamma[5/6], 10, 104][[1]]
    RealDigits[Gamma[1/3]^3 / (2^(4/3)*Sqrt[3]*Pi), 10, 104][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)

Formula

Equals sqrt(Pi) * Gamma(4/3) / Gamma(5/6).
Equals Gamma(1/3)^3 / (2^(4/3) * sqrt(3) * Pi). - Vaclav Kotesovec, Apr 09 2024
Equals A118292/2. - Hugo Pfoertner, Apr 09 2024

A371861 Decimal expansion of Integral_{x=0..1} sqrt(1 - x^3) dx.

Original entry on oeis.org

8, 4, 1, 3, 0, 9, 2, 6, 3, 1, 9, 5, 2, 7, 2, 5, 5, 6, 7, 0, 5, 0, 1, 1, 4, 4, 7, 4, 3, 0, 1, 7, 6, 4, 8, 1, 2, 7, 7, 8, 1, 3, 3, 2, 3, 2, 5, 4, 3, 9, 1, 6, 5, 7, 7, 0, 9, 1, 9, 6, 3, 9, 2, 2, 4, 5, 7, 7, 0, 8, 5, 9, 5, 8, 9, 0, 8, 1, 9, 7, 7, 6, 4, 2, 5, 1, 1, 3, 5, 9, 8, 9, 1, 0, 1, 4, 8, 7, 0, 8, 2, 3, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			0.8413092631952725567050114474301764812778...
		

Crossrefs

Decimal expansions of Integral_{x=0..1} sqrt(1 - x^k) dx: A003881 (k=2), this sequence (k=3), A225119 (k=4).

Programs

  • Mathematica
    RealDigits[Sqrt[Pi] Gamma[1/3]/(6 Gamma[11/6]), 10, 103][[1]]
    RealDigits[Sqrt[3] * Gamma[1/3]^3 / (5*Pi*2^(4/3)), 10, 103][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)
  • PARI
    intnum(x=0, 1, sqrt(1 - x^3)) \\ Michel Marcus, Apr 10 2024

Formula

Equals sqrt(Pi) * Gamma(1/3) / (6 * Gamma(11/6)).
Equals sqrt(3) * Gamma(1/3)^3 / (5*Pi*2^(4/3)). - Vaclav Kotesovec, Apr 09 2024
Equals 3*A118292/10. - Hugo Pfoertner, Apr 09 2024
Showing 1-8 of 8 results.