cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A243162 Numbers n such that n^2 divides n.n.n where dot "." means concatenation.

Original entry on oeis.org

1, 3, 13, 21, 37, 39, 91, 1443, 3367, 9901, 157737, 333667, 999001, 3075403, 9226209, 14287143, 33336667, 99990001, 1171182883, 1224848037, 1286294191, 1397863441, 1428557143, 1469179621, 1535254357, 1568996211, 1753536967, 1792076241, 1839599913, 1891910811
Offset: 1

Views

Author

Hans Havermann, May 31 2014

Keywords

Comments

Number of d-digit solutions for d = 1..100: 2, 5, 0, 3, 0, 3, 2, 3, 0, 39, 0, 2, 0, 106, 0, 3, 3, 2, 0, 441, 4, 14, 0, 5, 0, 15, 2, 283, 0, 23, 0, 61, 0, 24, 21, 4, 0, 22, 0, 240, 0, 34, 0, 96, 3, 30, 0, 6, 16, 281, 0, 216, 0, 22, 5, 3894, 2, 10, 0, 149, 2, 11, 0, 407, 0, 25, 0, 2136, 0, 53983, 0, 12, 1, 29, 11, 1872, 99, 20, 0, 6984, 0, 45, 0, 279, 32, 10, 5, 15928, 0, 213, 24, 791, 0, 20, 14, 44, 0, 713, 12, 89804.
Numbers n such that n divides 100^d+10^d+1, where 10^(d-1)<=n<10^d. - Robert Israel, Jan 11 2017

Examples

			21^2 divides 212121; 91^2 divides 919191; so both 21 and 91 are in the sequence.
		

Crossrefs

Cf. A147553 (n^2 divides n.n), A147554 (primes in this sequence).
Contains A074992 and A168624.

Programs

  • Maple
    Res:= {}:
    for d from 1 to 15 do
      Res:= Res union select(t -> t >= 10^(d-1) and t < 10^d,
       numtheory:-divisors(100^d+10^d+1))
    od:
    sort(convert(Res,list)); # Robert Israel, Jan 11 2017
  • Mathematica
    Do[d=Divisors[100^i+10^i+1];s=Select[d,Length[IntegerDigits[#]]==i&];If[Length[s]>0,Do[Print[s[[j]]],{j,Length[s]}]],{i,42}]

A147554 Primes p such that p^2 divides p.p.p where dot "." means concatenation.

Original entry on oeis.org

3, 13, 37, 9901, 333667, 99990001, 999999000001, 9999999900000001, 13168164561429877, 130654897808007778425046117
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 26 2008

Keywords

Comments

Primes p dividing 10^(2*d)+10^d+1 where d=ceiling(log(p)/log(10)) is the number of decimal digits in p. - Max Alekseyev
There is no prime p such that p^2 divides p.p.
All primes of the forms 10^(2m) - 10^m + 1 or (1/3)*(10^(2m) + 10^m + 1) are in the sequence.
Primes in A243162. - Hans Havermann, May 31 2014
a(11) > 10^158. - Max Alekseyev, Sep 11 2024

Crossrefs

A347541 Numbers q.r such that q*r divides q.r, when q and r have the same number of digits, "." means concatenation, and r may not begin with 0.

Original entry on oeis.org

11, 12, 15, 24, 36, 1352, 1734, 143143, 167334, 16673334, 1666733334, 166667333334, 16666673333334, 1666666733333334, 142857143142857143, 166666667333333334, 16666666673333333334, 1666666666733333333334, 166666666667333333333334, 16666666666673333333333334, 1666666666666733333333333334, 142857142857143142857142857143
Offset: 1

Views

Author

Bernard Schott, Oct 11 2021

Keywords

Comments

Problem proposed on French site Diophante (see link).
We have to solve Diophantine equation q.r = q*10^m + r = k * q * r where m = length(q) = length(r). Some results:
k can only take values 2, 3, 6, 7, 11, and ratio r/q = 1, 2, 4 or 5.
There are exactly 3 subsequences of terms that are solutions, one finite and two infinites:
-> Finite subsequence: 11, 12, 15, 36, 1352.
-> Infinite subsequence with k = 7 and r = q = (10^(6h-3)+1)/7, h>=1 (A147553 \ {1}), hence terms are (10^(6h-3)+1)^2/7 for h>=1: {143143, 142857143142857143, ... }.
-> Infinite subsequence with k = 3 and r = 2q, with q = (10^h+2)/6, r = (10^h+2)/3 for h>= 1: {24, 1734, 167334, 16673334, ...} (A348589).
Consequence: integers q.q that are divisible by q*q are exactly integers such that q is a term of A147553. If q = A147553(1) = 1, then 11/(1*1) = 11, while for q = A147553(n), n>=2, then q.q / (q*q) = 7.
Note that the first five terms are the 2-digit Zuckerman numbers (A007602).

Examples

			One example for each possible value of k = q.r / (q*r).
a(1) = 11 and 11/(1*1) = 11.
a(2) = 12 and 12/(1*2) = 6.
a(5) = 36 and 36/(3*6) = 2.
a(7) = 1734 and 1734/(17*34) = 3.
a(8) = 143143 and 143143/(143*143) = 7.
		

Crossrefs

A348589 a(n) = (10^n+2)^2 / 6.

Original entry on oeis.org

24, 1734, 167334, 16673334, 1666733334, 166667333334, 16666673333334, 1666666733333334, 166666667333333334, 16666666673333333334, 1666666666733333333334, 166666666667333333333334, 16666666666673333333333334, 1666666666666733333333333334
Offset: 1

Views

Author

Bernard Schott, Oct 24 2021

Keywords

Comments

Numbers q.r such that q.r = 3*q*r, when q and r have the same number of digits, "." means concatenation, r = 2q and r may not begin with 0.
We must solve the Diophantine equation q.r = q*10^m+r = 3 * q*r where m = length(q) = length(r).
The number of solutions is infinite with (r, q) = ((10^n+2)/3, (10^n+2)/6) and n >= 1.
Note that 15 satisfies also q.r = 3*q*r, 15 = 3*1*5 with here r = 5*q.
For further information about the general equation q.r = k * q*r, see A347541.
Problem proposed on the French website Diophante (see link).

Examples

			a(1) = 12^2 / 6 = 24 and 2.4 = 3 * 2*4.
a(2) = 102^2 / 6 = 1734 and 17.34 = 3 * 17*34.
		

Crossrefs

Subsequence of A347541.

Programs

  • Maple
    seq((10^n+2)^2 / 6, n=1..14);
  • Mathematica
    Table[(10^n + 2)^2/6, {n, 1, 14}] (* Amiram Eldar, Oct 24 2021 *)
    LinearRecurrence[{111,-1110,1000},{24,1734,167334},20] (* Harvey P. Dale, Sep 05 2025 *)
  • Python
    def a(n): return (10**n+2)**2//6
    print([a(n) for n in range(1, 15)]) # Michael S. Branicky, Oct 24 2021

Formula

a(n) = (10^n+2)^2 / 6.
a(n) = A133384(n-1)^2/6.
G.f.: 6*x*(4-155*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)). - Stefano Spezia, Oct 25 2021
a(n) = 3*A102807(n)/2. - Hugo Pfoertner, Oct 30 2021
Showing 1-4 of 4 results.