A147600 Expansion of 1/(1 - 3*x^2 + x^4).
1, 0, 3, 0, 8, 0, 21, 0, 55, 0, 144, 0, 377, 0, 987, 0, 2584, 0, 6765, 0, 17711, 0, 46368, 0, 121393, 0, 317811, 0, 832040, 0, 2178309, 0, 5702887, 0, 14930352, 0, 39088169, 0, 102334155, 0, 267914296, 0, 701408733, 0, 1836311903, 0, 4807526976, 0
Offset: 0
Examples
G.f. = 1 + 3*x^2 + 8*x^4 + 21*x^6 + 55*x^8 + 144*x^10 + 377*x^12 + 987*x^14 + ...
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1).
Crossrefs
Programs
-
Magma
[(1+(-1)^n)*Fibonacci(n+2)/2: n in [0..60]]; // G. C. Greubel, Oct 25 2022
-
Mathematica
f[x_]= -1 -x +x^2; CoefficientList[Series[-1/(x^2*f[x]*f[1/x]), {x,0,60}], x] (* or *) M={{0,1,0,0}, {0,0,1,0}, {0,0,0,1}, {-1,0,3,0}}; v[0]= {1,0,3,0}; v[n_]:= v[n]= M.v[n-1]; Table[v[n][[1]], {n,0,60}] LinearRecurrence[{0,3,0,-1}, {1,0,3,0}, 60] (* Jean-François Alcover, Sep 23 2017 *)
-
PARI
Vec(1/(1 - 3*x^2 + x^4)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
SageMath
[((n+1)%2)*fibonacci(n+2) for n in range(60)] # G. C. Greubel, Oct 25 2022
Formula
O.g.f.: 1/(1 - 3*x^2 + x^4).
a(2*k) = F(2*(k+1)), a(2*k+1) = 0, k>=0, with F(n)=A000045(n). - Richard Choulet, Nov 13 2008
a(n) + a(n-1) + a(n-2) = A005013(n + 1). - Michael Somos, Apr 13 2012
a(n) = (2^(-2-n)*((1 + (-1)^n)*((-3+sqrt(5))*(-1+sqrt(5))^n + (1+sqrt(5))^n*(3+sqrt(5)))))/sqrt(5). - Colin Barker, Mar 28 2016
Comments