cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147600 Expansion of 1/(1 - 3*x^2 + x^4).

Original entry on oeis.org

1, 0, 3, 0, 8, 0, 21, 0, 55, 0, 144, 0, 377, 0, 987, 0, 2584, 0, 6765, 0, 17711, 0, 46368, 0, 121393, 0, 317811, 0, 832040, 0, 2178309, 0, 5702887, 0, 14930352, 0, 39088169, 0, 102334155, 0, 267914296, 0, 701408733, 0, 1836311903, 0, 4807526976, 0
Offset: 0

Views

Author

Roger L. Bagula, Nov 08 2008

Keywords

Comments

S(n,sqrt(5)), with the Chebyshev polynomials A049310, is an integer sequence in the real quadratic number field Q(sqrt(5)) with basis numbers <1,phi>, phi:=(1+sqrt(5))/2. S(n,sqrt(5)) = A(n) + 2*B(n)*phi, with A(n) = A005013(n+1)*(-1)^n and B(n) = a(n-1), n>=0, with a(-1)=0. - Wolfdieter Lang, Nov 24 2010
The sequence (s(n)) given by s(0) = 0 and s(n) = a(n-1) for n > 0 is the p-INVERT of (0, 1, 0, 1, 0, 1, ...) using p(S) = 1 - S^2; see A291219. - Clark Kimberling, Aug 30 2017
From Jean-François Alcover, Sep 24 2017: (Start)
Consider this array of successive differences:
0, 0, 0, 1, 0, 3, 0, 8, 0, 21, ...
0, 0, 1, -1, 3, -3, 8, -8, 21, -21, ...
0, 1, -2, 4, -6, 11, -16, 29, -42, 76, ...
1, -3, 6, -10, 17, -27, 45, -71, 118, -186, ...
-4, 9, -16, 27, -44, 72, -116, 189, -304, 495, ...
13, -25, 43, -71, 116, -188, 305, -493, 799, -1291, ...
-38, 68, -114, 187, -304, 493, -798, 1292, -2090, 3383, ...
...
First row = even-index Fibonacci numbers with interleaved zeros = this sequence right-shifted 3 positions.
Main diagonal = 0,0,-2,-10,-44,-188,-798,... = -A099919 right-shifted.
First upper subdiagonal = 0,1,4,17,72,305,1292,... = A001076 right-shifted.
Second upper subdiagonal = 0,-1,-6,-27,-116,-493,-2090,... = -A049651.
Third upper subdiagonal = 1,3,11,45,189,799,3383,... = A292278.
(End) (Comment based on an e-mail from Paul Curtz)

Examples

			G.f. = 1 + 3*x^2 + 8*x^4 + 21*x^6 + 55*x^8 + 144*x^10 + 377*x^12 + 987*x^14 + ...
		

Crossrefs

Programs

  • Magma
    [(1+(-1)^n)*Fibonacci(n+2)/2: n in [0..60]]; // G. C. Greubel, Oct 25 2022
    
  • Mathematica
    f[x_]= -1 -x +x^2; CoefficientList[Series[-1/(x^2*f[x]*f[1/x]), {x,0,60}], x]
    (* or *)
    M={{0,1,0,0}, {0,0,1,0}, {0,0,0,1}, {-1,0,3,0}}; v[0]= {1,0,3,0}; v[n_]:= v[n]= M.v[n-1]; Table[v[n][[1]], {n,0,60}]
    LinearRecurrence[{0,3,0,-1}, {1,0,3,0}, 60] (* Jean-François Alcover, Sep 23 2017 *)
  • PARI
    Vec(1/(1 - 3*x^2 + x^4)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • SageMath
    [((n+1)%2)*fibonacci(n+2) for n in range(60)] # G. C. Greubel, Oct 25 2022

Formula

O.g.f.: 1/(1 - 3*x^2 + x^4).
a(2*k) = F(2*(k+1)), a(2*k+1) = 0, k>=0, with F(n)=A000045(n). - Richard Choulet, Nov 13 2008
a(n) + a(n-1) + a(n-2) = A005013(n + 1). - Michael Somos, Apr 13 2012
a(n) = (2^(-2-n)*((1 + (-1)^n)*((-3+sqrt(5))*(-1+sqrt(5))^n + (1+sqrt(5))^n*(3+sqrt(5)))))/sqrt(5). - Colin Barker, Mar 28 2016