cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147656 The arithmetic mean of the n-th and (n+1)-st cubes, rounded down.

Original entry on oeis.org

0, 4, 17, 45, 94, 170, 279, 427, 620, 864, 1165, 1529, 1962, 2470, 3059, 3735, 4504, 5372, 6345, 7429, 8630, 9954, 11407, 12995, 14724, 16600, 18629, 20817, 23170, 25694, 28395, 31279, 34352, 37620, 41089, 44765, 48654, 52762, 57095, 61659
Offset: 0

Views

Author

Keywords

Comments

The terms of this sequence relate to intervals between cubes in the same fashion as terms of A002378 are related to intervals between squares.

Crossrefs

Programs

  • Magma
    I:=[0, 4, 17, 45]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, May 06 2012
  • Maple
    seq(coeff(series(x*(x^2+x+4)/(1-x)^4,x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Sep 11 2018
  • Mathematica
    Table[(n^3+(n+1)^3-1)/2,{n,0,70}] (* Vladimir Joseph Stephan Orlovsky, May 04 2011 *)
  • PARI
    j=[];for (n=0,40,j=concat(j,n^3+floor(((n+1)^3 - n^3)/2)));j
    
  • PARI
    a(n) = n*(2*n^2+3*n+3)/2; \\ Altug Alkan, Sep 20 2018
    

Formula

a(n) = floor((A000578(n) + A000578(n+1))/2).
From R. J. Mathar, Nov 11 2008: (Start)
a(n) = A000578(n) + A045943(n) = n*(2n^2+3n+3)/2.
G.f.: x*(4+x+x^2)/(1-x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 06 2012
a(n) = A027480(n) + A006003(n). - Bruce J. Nicholson, Jun 03 2018
From A.H.M. Smeets, Sep 10 2018: (Start)
a(n) = Sum_{k=0..n-1} (n+1)^2-k for n >= 0 with empty domain of summation for n = 0.
a(n) = n*(n+1)^2 - n*(n-1)/2 for n >= 0.
Lim_{n -> inf} a(n-1)/n^3 = 1. (End)
E.g.f.: exp(x)*(8*x + 9*x^2 + 2*x^3)/2. - Stefano Spezia, Sep 12 2018
a(n) = A081435(n)-1. - R. J. Mathar, Sep 14 2018