A147656 The arithmetic mean of the n-th and (n+1)-st cubes, rounded down.
0, 4, 17, 45, 94, 170, 279, 427, 620, 864, 1165, 1529, 1962, 2470, 3059, 3735, 4504, 5372, 6345, 7429, 8630, 9954, 11407, 12995, 14724, 16600, 18629, 20817, 23170, 25694, 28395, 31279, 34352, 37620, 41089, 44765, 48654, 52762, 57095, 61659
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[0, 4, 17, 45]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, May 06 2012
-
Maple
seq(coeff(series(x*(x^2+x+4)/(1-x)^4,x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Sep 11 2018
-
Mathematica
Table[(n^3+(n+1)^3-1)/2,{n,0,70}] (* Vladimir Joseph Stephan Orlovsky, May 04 2011 *)
-
PARI
j=[];for (n=0,40,j=concat(j,n^3+floor(((n+1)^3 - n^3)/2)));j
-
PARI
a(n) = n*(2*n^2+3*n+3)/2; \\ Altug Alkan, Sep 20 2018
Formula
From R. J. Mathar, Nov 11 2008: (Start)
G.f.: x*(4+x+x^2)/(1-x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 06 2012
From A.H.M. Smeets, Sep 10 2018: (Start)
a(n) = Sum_{k=0..n-1} (n+1)^2-k for n >= 0 with empty domain of summation for n = 0.
a(n) = n*(n+1)^2 - n*(n-1)/2 for n >= 0.
Lim_{n -> inf} a(n-1)/n^3 = 1. (End)
E.g.f.: exp(x)*(8*x + 9*x^2 + 2*x^3)/2. - Stefano Spezia, Sep 12 2018
a(n) = A081435(n)-1. - R. J. Mathar, Sep 14 2018
Comments