cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A081064 Irregular array, read by rows: T(n,k) is the number of labeled acyclic digraphs with n nodes and k arcs (n >= 0, 0 <= k <= n*(n-1)/2).

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 12, 6, 1, 12, 60, 152, 186, 108, 24, 1, 20, 180, 940, 3050, 6180, 7960, 6540, 3330, 960, 120, 1, 30, 420, 3600, 20790, 83952, 240480, 496680, 750810, 838130, 691020, 416160, 178230, 51480, 9000, 720, 1, 42, 840, 10570, 93030, 601944
Offset: 0

Views

Author

Vladeta Jovovic, Apr 15 2003

Keywords

Examples

			Array T(n,k) (with n >= 0 and 0 <= k <= n*(n-1)/2) begins as follows:
  1;
  1;
  1,  2;
  1,  6,  12,   6;
  1, 12,  60, 152,  186,  108,   24;
  1, 20, 180, 940, 3050, 6180, 7960, 6540, 3330, 960, 120;
  ...
From _Petros Hadjicostas_, Apr 10 2020: (Start)
For n=2 and k=2, we have T(2,2) = 2 labeled directed acyclic graphs with 2 nodes and 2 arcs: [A (double ->) B] and [B (double ->) A].
For n=3 and k=4, we have T(3,4) = 6 labeled directed acyclic graphs with 3 nodes and 4 arcs: [X (double ->) Y (single ->) Z (single <-) X] with (X,Y,Z) a permutation of {A,B,C}. (End)
		

Crossrefs

Cf. A003024 (row sums), A055533 (subdiagonal).
Columns: A147796 (k = 3), A147817 (k = 4), A147821 (k = 5), A147860 (k = 6), A147872 (k = 7), A147881 (k = 8), A147883 (k = 9), A147964 (k = 10).

Programs

  • Maple
    A081064gf := proc(n,x)
        local m,a ;
        option remember;
        if n = 0 then
            1;
        else
            a := 0 ;
            for m from 1 to n do
                a := a+(-1)^(m-1)*binomial(n,m)*(1+x)^(m*(n-m)) *procname(n-m,x) ;
            end do:
            expand(a) ;
        end if;
    end proc:
    A081064 := proc(n,k)
        coeff(A081064gf(n,x),x,k) ;
    end proc:
    for n from 0 to 8 do
        for k from 0 do
            tnk := A081064(n,k) ;
            if tnk =0 then
                break;
            end if;
            printf("%d ",tnk) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Mar 21 2019
  • Mathematica
    nn = 6; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + x)^(k (n - k)) a[   n - k], {k, 1, n}]; a[0] = 1; Table[CoefficientList[a[n], x], {n, 0, nn}] // Grid (* Geoffrey Critzer, Mar 11 2023 *)
  • PARI
    B(n)={my(v=vector(n)); for(n=1, #v, v[n]=vector(n, i, if(i==n, 1, my(u=v[n-i]); sum(j=1, #u, (1+'y)^(i*(#u-j))*((1+'y)^i-1)^j * binomial(n,i) * u[j])))); v}
    T(n)={my(v=B(n)); vector(#v+1, n, if(n==1, [1], Vecrev(vecsum(v[n-1]))))}
    { my(A=T(5)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Dec 27 2021

Formula

1 = 1*exp(-x) + 1*exp(-(1+y)*x)*x/1! + (2*y+1)*exp(-(1+y)^2*x)*x^2/2! + (6*y^3 + 12*y^2 + 6*y + 1)*exp(-(1+y)^3*x)*x^3/3! + (24*y^6 + 108*y^5 + 186*y^4 + 152*y^3 + 60*y^2 + 12*y + 1)*exp(-(1+y)^4*x)*x^4/4! + (120*y^10 + 960*y^9 + 3330*y^8 + 6540*y^7 + 7960*y^6 + 6180*y^5 + 3050*y^4 + 940*y^3 + 180*y^2 + 20*y + 1)*exp(-(1+y)^5*x)*x^5/5! + ... - Vladeta Jovovic, Jun 07 2005
We explain Vladeta Jovovic's functional equation above. If F_n(y) = Sum_{k = 0..n*(n-1)/2) T(n,k) * y^k for n >= 0, then Sum_{n >= 0} F_n(y) * exp(-(1 + y)^n * x) * x^n/n! = 1. - Petros Hadjicostas, Apr 11 2020
From Petros Hadjicostas, Apr 10 2020: (Start)
If A_n(x) = Sum_{k >= 0} T(n,k)*x^k (with T(n,k) = 0 for k > n*(n-1)/2)), then Sum_{m=1..n} (-1)^(m-1) * binomial(n,m) * (1 + x)^(m*(n-m)) * A_m(x) = 1.
T(n,0) = 1, T(n,1) = n*(n-1), T(n,2) = 12*binomial(n+1,4), and T(n,3) = binomial(n,3)*(n^3 - 5*n - 6).
Also, T(n, n*(n-1)/2 - 1) = A055533(n) = n!*(n-1)^2/2 for n > 1. (End)

Extensions

T(0,0) = 1 prepended by Petros Hadjicostas, Apr 11 2020

A147817 Number of consistent sets of 4 irreflexive binary order relationships over n objects.

Original entry on oeis.org

186, 3050, 20790, 93030, 321580, 930636, 2362500, 5420580, 11473110, 22732710, 42628586, 76289850, 131160120, 217765240, 350657640, 549562536, 840752850, 1258681410, 1847900670, 2665301870, 3782707236, 5289850500, 7297782700, 9942741900, 13390527150
Offset: 4

Views

Author

R. H. Hardin, May 04 2009

Keywords

Comments

It seems that a(n) = A081064(n,4) = number of labeled acyclic directed graphs with n nodes and k = 4 arcs (see Rodionov (1992)). The reason is that we may label the graphs with the n objects and draw an arc from X towards Y if and only if X < Y. The 4 arcs of the directed graph correspond to the 4-set of binary order relationships and they are consistent because the directed graph is acyclic. - Petros Hadjicostas, Apr 10 2020

Crossrefs

Related sequences for the number of consistent sets of k irreflexive binary order relationships over n objects: A147796 (k = 3), A147821 (k = 5), A147860 (k = 6), A147872 (k = 7), A147881 (k = 8), A147883 (k = 9), A147964 (k = 10).
Column k = 4 of A081064.

Programs

  • Maple
    a := n -> (1/24)*(n-3)*(n-2)*(n-1)*n*(n*(n*(n*(n+2)-5)-22)-30):
    seq(a(n), n=4..28); # Peter Luschny, Apr 11 2020
  • Mathematica
    Table[(1/24)*(n - 3)*(n - 2)*(n - 1)*n*(n*(n*(n*(n + 2) - 5) - 22) - 30), {n, 4, 25}] (* Wesley Ivan Hurt, Apr 12 2020 *)

Formula

a(n) = binomial(n,4) * (n^4 + 2*n^3 - 5*n^2 - 22*n - 30). - Vaclav Kotesovec, Apr 11 2020
Conjectures from Colin Barker, Apr 11 2020: (Start)
G.f.: 2*x^4*(93 + 688*x + 18*x^2 + 48*x^3 - 7*x^4) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>10.
(End)

Extensions

More terms from Vaclav Kotesovec, Apr 11 2020
Offset changed to n=4 by Petros Hadjicostas, Apr 11 2020

A147821 Number of consistent sets of 5 irreflexive binary order relationships over n objects.

Original entry on oeis.org

108, 6180, 83952, 601944, 2991576, 11662056, 38167920, 109368864, 282174948, 668565612, 1475938464, 3069513720, 6065522736, 11466274512, 20850952608, 36639176832, 62447999580, 103567126068, 167581781136, 265177823064, 411169457160, 625796259000
Offset: 4

Views

Author

R. H. Hardin, May 04 2009

Keywords

Comments

It seems that a(n) = A081064(n,5) is the number of labeled acyclic directed graphs with n nodes and k = 5 arcs (see Rodionov (1992)). The reason is that we may label the graphs with the n objects and draw an arc from X towards Y if and only if X < Y. The 5 arcs of the directed graph correspond to the 3-set of binary order relationships and they are consistent because the directed graph is acyclic. - Petros Hadjicostas, Apr 10 2020

Crossrefs

Related sequences for the number of consistent sets of k irreflexive binary order relationships over n objects: A147796 (k = 3), A147817 (k = 4), A147860 (k = 6), A147872 (k = 7), A147881 (k = 8), A147883 (k = 9), A147964 (k = 10).
Column k = 5 of A081064.

Programs

  • Maple
    a := n -> (1/120)*(n-3)*(n-2)*(n-1)*n*(n*(n*(n*(n*(n^2+n-15)-45)-4)+326)+900):
    seq(a(n), n=4..25); # Peter Luschny, Apr 11 2020
  • Mathematica
    Table[(n - 3)*(n - 2)*(n - 1)*n*(n^6 + n^5 - 15*n^4 - 45*n^3 - 4*n^2 + 326*n + 900)/120, {n, 4, 25}] (* Wesley Ivan Hurt, Apr 11 2020 *)

Formula

a(n) = (n-3)*(n-2)*(n-1)*n*(n^6 + n^5 - 15*n^4 - 45*n^3 - 4*n^2 + 326*n + 900)/120. - Vaclav Kotesovec, Apr 11 2020
Conjectures from Colin Barker, Apr 11 2020: (Start)
G.f.: 12*x^4*(9 + 416*x + 1826*x^2 + 46*x^3 + 291*x^4 - 78*x^5 + 10*x^6) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>12.
(End)

Extensions

More terms from Vaclav Kotesovec, Apr 11 2020
Offset changed by Petros Hadjicostas, Apr 11 2020

A147860 Number of consistent sets of 6 irreflexive binary order relationships over n objects.

Original entry on oeis.org

24, 7960, 240480, 2934568, 21663936, 115970400, 495329520, 1787153280, 5652862776, 16082870232, 41929743856, 101579030280, 231145969600, 498267767424, 1024487280288, 2020455667392, 3839788818840, 7059475223640, 12597342069312, 21880343758504, 37081456651008
Offset: 4

Views

Author

R. H. Hardin, May 04 2009

Keywords

Crossrefs

Related sequences for the number of consistent sets of k irreflexive binary order relationships over n objects: A147796 (k = 3), A147817 (k = 4), A147821 (k = 5), A147872 (k = 7), A147881 (k = 8), A147883 (k = 9), A147964 (k = 10).
Column k = 6 of A081064.

Formula

a(n) = (n-3)*(n-2)*(n-1)*n*(n^8 - 26*n^6 - 60*n^5 + 131*n^4 + 1200*n^3 + 3374*n^2 - 4140*n - 44640)/720. - Vaclav Kotesovec, Apr 11 2020

Extensions

More terms from Vaclav Kotesovec, Apr 11 2020
Offset changed to n=4 by Petros Hadjicostas, Apr 11 2020

A147872 Number of consistent sets of 7 irreflexive binary order relationships over n objects.

Original entry on oeis.org

6540, 496680, 10931760, 124318112, 934536600, 5284309680, 24238001040, 94622473440, 324833152644, 1003729086360, 2840342968320, 7458732665280, 18365400613040, 42754133712096, 94739078371680, 200943535287360, 409861294271100, 807103156903560, 1539611666989968
Offset: 5

Views

Author

R. H. Hardin, May 04 2009

Keywords

Crossrefs

Related sequences for the number of consistent sets of k irreflexive binary order relationships over n objects: A147796 (k = 3), A147817 (k = 4), A147821 (k = 5), A147860 (k = 6), A147881 (k = 8), A147883 (k = 9), A147964 (k = 10).
Column k = 7 of A081064.

Formula

a(n) = (n-4)*(n-3)*(n-2)*(n-1)*n*(n^9 + 3*n^8 - 26*n^7 - 168*n^6 - 259*n^5 + 1743*n^4 + 15044*n^3 + 40722*n^2 - 111060*n - 817320)/5040. - Vaclav Kotesovec, Apr 11 2020

Extensions

More terms from Vaclav Kotesovec, Apr 11 2020
Offset changed to n=5 by Petros Hadjicostas, Apr 11 2020

A147881 Number of consistent sets of 8 irreflexive binary order relationships over n objects.

Original entry on oeis.org

3330, 750810, 31528980, 572121396, 6186026736, 47056700160, 277413461820, 1346956001820, 5610483560682, 20631960791442, 68410542640440, 207816360293880, 585602287143120, 1545890870506608, 3853704950392968, 9131773574418120, 20681704245537090, 44975479946588730
Offset: 5

Views

Author

R. H. Hardin, May 04 2009

Keywords

Crossrefs

Related sequences for the number of consistent sets of k irreflexive binary order relationships over n objects: A147796 (k = 3), A147817 (k = 4), A147821 (k = 5), A147860 (k = 6), A147872 (k = 7), A147883 (k = 9), A147964 (k = 10).
Column k = 8 of A081064.

Formula

a(n) = (n-4)*(n-3)*(n-2)*(n-1)*n*(n^11 + 2*n^10 - 43*n^9 - 226*n^8 - 21*n^7 + 5110*n^6 + 36247*n^5 + 91954*n^4 - 612172*n^3 - 5449152*n^2 - 2743020*n + 82544280)/40320. - Vaclav Kotesovec, Apr 11 2020

Extensions

More terms from Vaclav Kotesovec, Apr 11 2020
Offset changed to n=5 by Petros Hadjicostas, Apr 11 2020

A147883 Number of consistent sets of 9 irreflexive binary order relationships over n objects.

Original entry on oeis.org

960, 838130, 71331470, 2134043800, 33969932808, 353530511420, 2710992616420, 16512265636680, 83974746129560, 369225271340926, 1439572248244130, 5072665106738320, 16393720098232880, 49158099955813080, 138052747638032104, 365886966555545840, 920991546926843280
Offset: 5

Views

Author

R. H. Hardin, May 04 2009

Keywords

Crossrefs

Related sequences for the number of consistent sets of k irreflexive binary order relationships over n objects: A147796 (k = 3), A147817 (k = 4), A147821 (k = 5), A147860 (k = 6), A147872 (k = 7), A147881 (k = 8), A147964 (k = 10).
Column k = 9 of A081064.

Formula

a(n) = (n-4)*(n-3)*(n-2)*(n-1)*n*(n^13 + n^12 - 61*n^11 - 271*n^10 + 501*n^9 + 10539*n^8 + 69721*n^7 + 170899*n^6 - 1975510*n^5 - 21334612*n^4 - 30150228*n^3 + 619527780*n^2 + 1942605000*n - 10974342960)/362880. - Vaclav Kotesovec, Apr 11 2020

Extensions

More terms from Vaclav Kotesovec, Apr 11 2020
Offset changed to n=5 by Petros Hadjicostas, Apr 11 2020

A147964 Number of consistent sets of 10 irreflexive binary order relationships over n objects.

Original entry on oeis.org

120, 691020, 128047374, 6519340912, 156097542888, 2259242749800, 22815705739244, 175939638868224, 1099964624581680, 5812510584460580, 26753072198342490, 109684475412107232, 407515671392921520, 1390695205822539984, 4406577363489470616, 13079027432832437440
Offset: 5

Views

Author

R. H. Hardin, May 04 2009

Keywords

Crossrefs

Related sequences for the number of consistent sets of k irreflexive binary order relationships over n objects: A147796 (k = 3), A147817 (k = 4), A147821 (k = 5), A147860 (k = 6), A147872 (k = 7), A147881 (k = 8), A147883 (k = 9).
Column k = 10 of A081064.

Programs

  • Mathematica
    Table[(n - 4)*(n - 3)*(n - 2)*(n - 1)*n*(n^15 - 80*n^13 - 300*n^12 + 1366*n^11 + 18300*n^10 + 117700*n^9 + 293220*n^8 - 4873571*n^7 - 63731100*n^6 - 168619940*n^5 + 2528179320*n^4 + 17989477164*n^3 - 56994404400*n^2 - 561199055760*n + 1856094609600)/3628800, {n, 5, 20}] (* Wesley Ivan Hurt, Apr 12 2020 *)

Formula

a(n) = (n-4)*(n-3)*(n-2)*(n-1)*n*(n^15 - 80*n^13 - 300*n^12 + 1366*n^11 + 18300*n^10 + 117700*n^9 + 293220*n^8 - 4873571*n^7 - 63731100*n^6 - 168619940*n^5 + 2528179320*n^4 + 17989477164*n^3 - 56994404400*n^2 - 561199055760*n + 1856094609600)/3628800. - Vaclav Kotesovec, Apr 11 2020

Extensions

More terms from Vaclav Kotesovec, Apr 11 2020
Offset changed to n=5 by Petros Hadjicostas, Apr 11 2020
Showing 1-8 of 8 results.