cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A036263 Second differences of primes.

Original entry on oeis.org

1, 0, 2, -2, 2, -2, 2, 2, -4, 4, -2, -2, 2, 2, 0, -4, 4, -2, -2, 4, -2, 2, 2, -4, -2, 2, -2, 2, 10, -10, 2, -4, 8, -8, 4, 0, -2, 2, 0, -4, 8, -8, 2, -2, 10, 0, -8, -2, 2, 2, -4, 8, -4, 0, 0, -4, 4, -2, -2, 8, 4, -10, -2, 2, 10, -8, 4, -8, 2, 2, 2, -2, 0, -2, 2, 2, -4, 4, 2, -8, 8, -8, 4, -2, 2, 2, -4, -2, 2, 8, -4
Offset: 1

Views

Author

Keywords

Examples

			a(3) = 5 + 11 - 2*7 = 16 - 14 = 2.
		

Crossrefs

For records see A293154, A293155.

Programs

  • Haskell
    a036263 n = a036263_list !! (n-1)
    a036263_list = zipWith (-) (tail a001223_list) a001223_list
    -- Reinhard Zumkeller, Oct 29 2011
    
  • Maple
    A036263:=n->ithprime(n) + ithprime(n+2) - 2*ithprime(n+1); seq(A036263(n), n=1..100); # Wesley Ivan Hurt, Apr 01 2014
  • Mathematica
    Table[Prime[n - 1] + Prime[n + 1] - 2*Prime[n], {n, 2, 105}]
    Differences[Prime[Range[100]], 2] (* Harvey P. Dale, Oct 14 2012 *)
  • PARI
    for(n=2,100,print1(prime(n+2)-2*prime(n+1)+prime(n)","))
    
  • Python
    from sympy import prime
    def A036263(n): return prime(n)-(prime(n+1)<<1)+prime(n+2) # Chai Wah Wu, Sep 28 2024

Formula

a(A064113(n)) = 0. - Reinhard Zumkeller, Jan 20 2012
a(n) = prime(n) + prime(n+2) - 2*prime(n+1). - Thomas Ordowski, Jul 21 2012
Conjecture: |a(1)| + |a(2)| + ... + |a(n)| ~ prime(n). - Thomas Ordowski, Jul 21 2012
a(n) = A001223(n+1) - A001223(n). - R. J. Mathar, Sep 19 2013
Sum_{i = 1..n - 1} a(i) = A046933(n), n >= 1. - Daniel Forgues, Apr 15 2014
Sum_{i = 2..n - 1} a(i) = prime(n + 1) - prime(n) - 2; Sum_{i = 2..n - 1} a(i) = 0 whenever prime(n) is a lesser of twin primes. - Hamdi Murat Yildirim, Jun 24 2014

A147812 Primes prime(n) such that prime(n+1) - prime(n) > prime(n+2) - prime(n+1).

Original entry on oeis.org

7, 13, 23, 31, 37, 53, 61, 67, 73, 89, 97, 103, 113, 131, 139, 157, 173, 181, 193, 211, 223, 233, 241, 263, 271, 277, 293, 307, 317, 337, 359, 373, 389, 409, 421, 433, 449, 457, 467, 479, 491, 509, 523
Offset: 1

Views

Author

Roger L. Bagula, Nov 13 2008

Keywords

Comments

This was originally formulated as (-prime(n) + 2*prime(n+1) - prime(n+2))/((1 - prime(n) + prime(n+1))^(3/2)) > 0, which relates it to other sequences. This is equivalent since the denominator is always positive.

Examples

			The gap between 7 and the next prime, 11, is 4, which is greater than the next prime gap from 11 to 13, so 7 is in the sequence.
		

Crossrefs

Cf. A036263, A147813 (complement with respect to A000040).

Programs

  • Haskell
    import Data.List (findIndices)
    a147812 n = a147812_list !! (n-1)
    a147812_list = map (a000040 . (+ 1)) $ findIndices (< 0) a036263_list
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Mathematica
    d2[n_] = Prime[n + 2] - 2*Prime[n + 1] + Prime[n]; d1[n_] = Prime[n + 1] - Prime[n]; k[n_] = -d2[n]/(1 + d1[n])^(3/2); Flatten[Table[If[k[n] > 0, Prime[n], {}], {n, 1, 100}]]
    Select[Partition[Prime[Range[150]],3,1],#[[2]]-#[[1]]>#[[3]]-#[[2]]&][[All,1]] (* Harvey P. Dale, Mar 29 2022 *)
  • Ruby
    require 'mathn'
    Prime.take(100).each_cons(3).select{ |a,b,c| b-a>c-b }.map(&:first)
    -- Aaron Weiner, Dec 05 2013

Extensions

Edited by Alonso del Arte and Joerg Arndt, Nov 01 2013
Simpler formula added by Aaron Weiner, Dec 05 2013
Showing 1-2 of 2 results.