cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A181123 Numbers that are the differences of two positive cubes.

Original entry on oeis.org

0, 7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124, 127, 152, 169, 189, 208, 215, 217, 218, 271, 279, 296, 316, 331, 335, 342, 386, 387, 397, 448, 469, 485, 488, 504, 511, 513, 547, 602, 604, 631, 657, 665, 702, 721, 728, 784, 817, 819, 866, 875, 919, 936, 973
Offset: 1

Views

Author

T. D. Noe, Oct 06 2010

Keywords

Comments

Because x^3-y^3 = (x-y)(x^2+xy+y^2), the difference of two cubes is a prime number only if x=y+1, in which case all the primes are cuban, see A002407.
The difference can be a square (see A038597), but Fermat's Last Theorem prevents the difference from ever being a cube. Beal's Conjecture implies that there are no higher odd powers in this sequence.
If n is in the sequence, it must be x^3-y^3 where 0 < y <= x < n^(1/2). - Robert Israel, Dec 24 2017

Crossrefs

Cf. A024352 (squares), A147857 (4th powers), A181124-A181128 (5th to 9th powers).

Programs

  • Maple
    N:= 10^4: # to get all terms <= N
    sort(convert(select(`<=`, {0, seq(seq(x^3-y^3, y=1..x-1),x=1..floor(sqrt(N)))}, N),list)); # Robert Israel, Dec 24 2017
  • Mathematica
    nn=10^5; p=3; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]
    With[{nn=60},Take[Union[Abs[Flatten[Differences/@Tuples[ Range[ nn]^3,2]]]], nn]] (* Harvey P. Dale, May 11 2014 *)
  • PARI
    list(lim)=my(v=List([0]),a3); for(a=2,sqrtint(lim\3), a3=a^3; for(b=if(a3>lim,sqrtnint(a3-lim-1,3)+1,1), a-1, listput(v,a3-b^3))); Set(v) \\ Charles R Greathouse IV, Jan 25 2018

A181124 Difference of two positive 5th powers.

Original entry on oeis.org

0, 31, 211, 242, 781, 992, 1023, 2101, 2882, 3093, 3124, 4651, 6752, 7533, 7744, 7775, 9031, 13682, 15783, 15961, 16564, 16775, 16806, 24992, 26281, 29643, 31744, 32525, 32736, 32767, 40951, 42242, 51273, 55924, 58025, 58806, 59017, 59048, 61051
Offset: 1

Views

Author

T. D. Noe, Oct 06 2010

Keywords

Comments

Because x^5-y^5 = (x-y)(x^4+x^3*y+x^2*y^2+x*y^3+y^4), the difference of two 5th powers is a prime number only if x=y+1, in which case all the primes are in A121616. The number 7744 is the first of an infinite number of squares in this sequence.

Crossrefs

Cf. A024352 (squares), A181123 (cubes), A147857 (4th powers), A181125-A181128 (6th to 9th powers)

Programs

  • Mathematica
    nn=10^9; p=5; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]

A181128 Difference of two positive 9th powers.

Original entry on oeis.org

0, 511, 19171, 19682, 242461, 261632, 262143, 1690981, 1933442, 1952613, 1953124, 8124571, 9815552, 10058013, 10077184, 10077695, 30275911, 38400482, 40091463, 40333924, 40353095, 40353606, 93864121, 124140032, 132264603, 133955584
Offset: 1

Views

Author

T. D. Noe, Oct 06 2010

Keywords

Comments

No term is a prime number.

Crossrefs

Cf. A024352 (squares), A181123 (cubes), A147857 (4th powers), A181124-A181127 (5th to 8th powers)

Programs

  • Mathematica
    nn=10^15; p=9; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]

A152044 Numbers expressible as the difference of two nonnegative fourth powers.

Original entry on oeis.org

0, 1, 15, 16, 65, 80, 81, 175, 240, 255, 256, 369, 544, 609, 624, 625, 671, 1040, 1105, 1215, 1280, 1295, 1296, 1695, 1776, 2145, 2320, 2385, 2400, 2401, 2465, 2800, 3439, 3471, 3840, 4015, 4080, 4095, 4096, 4160, 4641, 5265, 5904, 5936, 6095, 6305, 6480
Offset: 1

Views

Author

Mark Taggart (mt2612f(AT)aol.com), Nov 21 2008

Keywords

Comments

This sequence seems to grow quadratically. Does a(n) ~ k*n^2 for some k? - Charles R Greathouse IV, Jan 16 2025

Examples

			E.g. 15=2^4-1^4, 175=4^4-3^4
		

Crossrefs

Contains A000583 and A147857 as subsequences. - Chandler

Programs

  • Mathematica
    Select[Abs[Differences/@Tuples[Range[0,12]^4,2]]//Flatten//Union,#<= 6500&] (* Harvey P. Dale, Sep 14 2020 *)
  • PARI
    is(n)=if(n<1,return(!n)); for(m=sqrtnint(n-1,4)+1, sqrtnint(n\4,3)+1, if(ispower(m^4-n,4),return(1))); 0 \\ Charles R Greathouse IV, Sep 04 2013
    
  • PARI
    lst(lim)=my(v=List([0]),t); lim\=1; for(n=1,sqrtnint(lim\4,3)+1, for(m=sqrtnint(max(n^4-lim,0),4), n-1, t=n^4-m^4; if(t<=lim, listput(v,t)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Sep 04 2013

Extensions

Extended by Ray Chandler, Dec 04 2008
Definition corrected by Harvey P. Dale, Jan 19 2018

A181125 Difference of two positive 6th powers.

Original entry on oeis.org

0, 63, 665, 728, 3367, 4032, 4095, 11529, 14896, 15561, 15624, 31031, 42560, 45927, 46592, 46655, 70993, 102024, 113553, 116920, 117585, 117648, 144495, 215488, 246519, 258048, 261415, 262080, 262143, 269297, 413792, 468559, 484785, 515816
Offset: 1

Views

Author

T. D. Noe, Oct 06 2010

Keywords

Comments

No term is a prime number.

Crossrefs

Cf. A024352 (squares), A181123 (cubes), A147857 (4th powers), A181124-A181128 (5th to 9th powers).
Cf. A022522 (a subsequence, except its first term). - Mathew Englander, Jun 01 2014

Programs

  • Mathematica
    nn=10^10; p=6; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]

A147854 Positive integers n such that n^2 = (x^4 - y^4)*(z^4 - t^4) where the pairs of integers (x,y) and (z,t) are not proportional.

Original entry on oeis.org

520, 975, 2040, 2080, 3567, 3900, 4680, 7215, 7800, 8160, 8320, 8775, 9840, 13000, 13920, 14268, 15600, 18360, 18720, 19680, 24375, 25480, 28860, 30160, 31200, 32103, 32640, 33280, 35100, 39360, 40545, 42120, 47775, 51000, 52000, 53040
Offset: 1

Views

Author

Max Alekseyev, Nov 17 2008, Nov 19 2008

Keywords

Comments

Positive integers n such that n^2 = s^4*A147858(m)*A147858(k) for positive integers s and kA147856.
Euler proved that if n^2 = (x^4 - y^4)*(z^4 - t^4) then a,b,c (if n is even) or 4a,4b,4c (if n is odd) form a triple of integers with all pairwise sums and differences being squares, where a=(x^4+y^4)*(z^4+t^4)/2, b=(n^2+(2xyzt)^2)/2 and c=(n^2-(2xyzt)^2)/2. Note that a,b,c are pairwise distinct if and only if (x,y) and (z,t) are not proportional.
4*A196289(n) = 4*(n^9 - n) belong to this sequence since (4*(n^9 - n))^2 = ((n^4+2*n^2-1)^4 - (n^4-2*n^2-1)^4) * (n^4 - 1).

Crossrefs

A147858 Differences of two coprime 4th powers.

Original entry on oeis.org

0, 15, 65, 80, 175, 255, 369, 544, 609, 624, 671, 1105, 1295, 1695, 1776, 2145, 2320, 2385, 2400, 2465, 3439, 3471, 4015, 4095, 4160, 4641, 5936, 6095, 6305, 6545, 6560, 7599, 7825, 8080, 9855, 9919, 9999, 10545, 12209, 12240, 13345, 13920, 14016
Offset: 0

Views

Author

Max Alekseyev, Nov 15 2008

Keywords

Comments

Primitive elements of A147857: any element n of A147857 is of the form a(k)*m^4 for some positive integer m.

Crossrefs

Programs

  • Mathematica
    Join[{0},Rest[#[[2]]-#[[1]]&/@Select[Subsets[Range[0,20]^4,{2}], CoprimeQ@@#&] //Union]] (* Harvey P. Dale, Dec 08 2016 *)

A181126 Difference of two positive 7th powers.

Original entry on oeis.org

0, 127, 2059, 2186, 14197, 16256, 16383, 61741, 75938, 77997, 78124, 201811, 263552, 277749, 279808, 279935, 543607, 745418, 807159, 821356, 823415, 823542, 1273609, 1817216, 2019027, 2080768, 2094965, 2097024, 2097151, 2685817
Offset: 1

Views

Author

T. D. Noe, Oct 06 2010

Keywords

Comments

Because x^7-y^7 = (x-y)(x^6+x^5*y+x^4*y^2+x^3*y^3+x^2*y^4+x*y^5+y^6), the difference of two 7th powers is a prime number only if x=y+1, in which case all the primes are in A121618.
The number 67675234241018881 = 127^8 is the first of an infinite number of squares of the form (b^(7k)-1)^8 in this sequence. Are any other squares possible?

Crossrefs

Cf. A024352 (squares), A181123 (cubes), A147857 (4th powers), A181124-A181128 (5th to 9th powers)

Programs

  • Mathematica
    nn=10^12; p=7; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]
    Join[{0},#[[2]]-#[[1]]&/@Subsets[Range[10]^7,{2}]//Union] (* Harvey P. Dale, Oct 23 2024 *)

A181127 Difference of two positive 8th powers.

Original entry on oeis.org

0, 255, 6305, 6560, 58975, 65280, 65535, 325089, 384064, 390369, 390624, 1288991, 1614080, 1673055, 1679360, 1679615, 4085185, 5374176, 5699265, 5758240, 5764545, 5764800, 11012415, 15097600, 16386591, 16711680, 16770655, 16776960
Offset: 1

Views

Author

T. D. Noe, Oct 06 2010

Keywords

Comments

No term is a prime number.

Crossrefs

Cf. A024352 (squares), A181123 (cubes), A147857 (4th powers), A181124-A181128 (5th to 9th powers)

Programs

  • Mathematica
    nn=10^14; p=8; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]

A303744 Numbers that are not a difference between same powers (greater than 1) of positive numbers.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 18, 22, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 222, 226, 230, 234, 238, 246, 250, 254, 258, 262, 266, 270, 274, 278, 282, 286, 290
Offset: 1

Views

Author

Adam Kertesz, Apr 29 2018

Keywords

Comments

Apart from 1 and 4, all terms == 2 (mod 4). - Robert Israel, Jun 25 2018

Examples

			Odd numbers greater than 1 are differences of squares, so they are not here.
8 is not a term, 9 - 1: difference of two squares;
26 is not a term, 27 - 1: difference of two cubes.
		

Crossrefs

Sequences of numbers that are difference of powers: A024352 (squares), A181123 (cubes).
And of further n-th powers: A147857 (4th), A181124 (5th), A181125 (6th), A181126 (7th), A181127 (8th), A181128 (9th).

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    S:= {1,2,4,seq(i,i=6..N,4)}:
    for p from 3 to ilog2(N+1) do
      for n from 1 while n^p - (n-1)^p <= N do
        if n^p > N then m0:= ceil((n^p - N)^(1/p)) else m0:= 1 fi;
        for m from m0 to n-1 do
          v:= n^p-m^p;
          S:= S minus {v};
        od
    od od:
    sort(convert(S,list)); # Robert Israel, Jun 25 2018
Showing 1-10 of 11 results. Next