A147973 a(n) = -2*n^2 + 12*n - 14.
-4, 2, 4, 2, -4, -14, -28, -46, -68, -94, -124, -158, -196, -238, -284, -334, -388, -446, -508, -574, -644, -718, -796, -878, -964, -1054, -1148, -1246, -1348, -1454, -1564, -1678, -1796, -1918, -2044, -2174, -2308, -2446, -2588, -2734, -2884, -3038, -3196, -3358
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- S. Gull, A. Lasenby and C. Doran, Imaginary Numbers are not Real - the Geometric Algebra of Spacetime, Found. Phys., Vol. 23(9) (1993), pp. 1175-1201.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[-2*n^2+12*n-14: n in [1..50]]; // Vincenzo Librandi, Jul 10 2012
-
Maple
[-2*n^2+12*n-14$n=1..50]; # Muniru A Asiru, Feb 12 2019
-
Mathematica
lst={};Do[k=n^2-((n-1)^2+(n-2)^2+(n-3)^2);AppendTo[lst,k],{n,5!}];lst Table[-2n^2+12n-14,{n,1,50}] (* Vincenzo Librandi, Jul 10 2012 *) LinearRecurrence[{3,-3,1},{-4,2,4},50] (* Harvey P. Dale, Mar 02 2020 *)
-
PARI
a(n)=-2*n^2+12*n-14 \\ Charles R Greathouse IV, Sep 24 2015
-
PARI
Vec(-2*x*(2 - 7*x + 7*x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Feb 12 2019
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 10 2012
a(n) = -2*A008865(n-3). - J. M. Bergot, Jun 25 2018
G.f.: -2*x*(2 - 7*x + 7*x^2)/(1 - x)^3. - Colin Barker, Feb 12 2019
E.g.f.: -2*(exp(x)*(x^2 - 5*x + 7) - 7). - Elmo R. Oliveira, Nov 17 2024
Comments