cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151542 Generalized pentagonal numbers: a(n) = 12*n + 3*n*(n-1)/2.

Original entry on oeis.org

0, 12, 27, 45, 66, 90, 117, 147, 180, 216, 255, 297, 342, 390, 441, 495, 552, 612, 675, 741, 810, 882, 957, 1035, 1116, 1200, 1287, 1377, 1470, 1566, 1665, 1767, 1872, 1980, 2091, 2205, 2322, 2442, 2565, 2691, 2820, 2952, 3087, 3225, 3366, 3510, 3657, 3807, 3960
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2009

Keywords

Crossrefs

The generalized pentagonal numbers b*n + 3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Mathematica
    s=0;lst={};Do[AppendTo[lst,s+=n],{n,12,6!,3}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 05 2010 *)
    LinearRecurrence[{3,-3,1}, {0,12,27}, 50] (* or *) With[{nn = 50}, CoefficientList[Series[(3/2)*(8*x + x^2)*Exp[x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 26 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace((3/2)*(8*x + x^2)*exp(x)))) \\ G. C. Greubel, May 26 2017
    
  • PARI
    a(n)=(3*n^2+21*n)/2 \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = a(n-1) + 3*n + 9 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(4 - 3*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
From G. C. Greubel, May 26 2017: (Start)
a(n) = 3*n*(n+7)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*(8*x + x^2)*exp(x). (End)
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 121/490.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/21 - 319/4410. (End)
a(n) = A003154(n+1) - A060544(n). - Leo Tavares, Mar 26 2022