cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A151740 Composites that are the sum of two consecutive composite numbers.

Original entry on oeis.org

10, 14, 22, 26, 34, 38, 46, 49, 51, 55, 58, 62, 65, 69, 74, 77, 82, 86, 91, 94, 99, 106, 111, 115, 118, 122, 125, 129, 134, 142, 146, 153, 155, 158, 161, 166, 169, 171, 175, 178, 183, 185, 187, 189, 194, 202, 206, 209, 214, 218, 221, 226, 231, 235, 237, 243, 245
Offset: 1

Views

Author

Claudio Meller, Jun 15 2009

Keywords

Comments

The even terms of this sequence are exactly twice the primes > 3. The odd terms are odd composites c for which the odd integer next to c/2 is not prime. - M. F. Hasler, Jun 16 2009
The English language can be ambiguous! What is meant here is: write down a list of the composite numbers 4,6,8,9,10,12,... Whenever the sum of two adjacent terms is composite, adjoin it to the sequence: 4+6=10, 6+8=14, 10+12=22, ... - N. J. A. Sloane, Nov 26 2019

Crossrefs

Cf. A167611 (Essentially the same, except for initial term).

Programs

  • Mathematica
    CompositeNext[n_]:=Module[{k=n+1},While[PrimeQ[k],k++ ];k]; q=6!;lst2={};Do[If[ !PrimeQ[n],c=CompositeNext[n];a2=n+c;If[ !PrimeQ[a2],AppendTo[lst2,a2]]],{n,q}];lst2 (* Vladimir Joseph Stephan Orlovsky, Jun 17 2009 *)
    Module[{c=Select[Range[300],CompositeQ],s2},s2=Total/@Partition[c,2,1];Intersection[c,s2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 27 2019 *)
  • PARI
    isA151740(n)= bittest(n,0) || return(isprime(n/2) && n>6); !isprime(bitor(n\2,1)) && !isprime(n) && n>1 \\ M. F. Hasler, Jun 16 2009
    
  • Python
    from sympy import isprime, composite
    print([totest for k in range(1,92) if not isprime(totest := composite(k) + composite(k+1))]) # Karl-Heinz Hofmann, Feb 06 2024

A060339 Primes that are each the sum of two, three, and four consecutive composite numbers.

Original entry on oeis.org

311, 337, 1009, 1103, 1511, 1777, 3671, 3889, 4271, 4657, 5737, 6841, 7561, 9649, 9769, 10223, 12239, 12889, 14759, 14831, 17401, 17569, 17783, 19009, 19031, 20903, 21529, 22369, 22751, 23279, 24049, 24889, 25057, 26423, 28871, 30671
Offset: 1

Views

Author

Robert G. Wilson v, Mar 30 2001

Keywords

Examples

			A(2)= 377 is equal to 168+169 = 111+112+114 = 82+84+85+86.
		

Crossrefs

Cf. A151744. [From Klaus Brockhaus, Jun 17 2009]

Programs

  • Mathematica
    composite[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k - PrimePi[ k ] - 1 != n, k++ ]; k); a = b = c = {}; Do[ p = Sum[ composite[ n + m ], {m, 0, 1} ]; If[ PrimeQ[ p ], a = Append[ a, p ] ]; p = Sum[ composite[ n + m ], {m, 0, 2} ]; If[ PrimeQ[ p ], b = Append[ b, p ] ]; p = Sum[ composite[ n + m ], {m, 0, 3} ]; If[ PrimeQ[ p ], c = Append[ c, p ] ], {n, 1, 25000} ]; Intersection[ a, b, c ]
    Module[{cmp=Select[Range[20000],CompositeQ],c2,c3,c4},c2=Total/@ Partition[ cmp,2,1];c3=Total/@Partition[cmp,3,1];c4=Total/@ Partition[ cmp,4,1];Select[ Intersection[c2,c3,c4],PrimeQ]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 01 2020 *)

Extensions

Definition clarified by Harvey P. Dale, Jul 01 2020
Showing 1-2 of 2 results.