A151752 a(n) is the unique n-digit number with all digits odd that is divisible by 5^n.
5, 75, 375, 9375, 59375, 359375, 3359375, 93359375, 193359375, 3193359375, 73193359375, 773193359375, 3773193359375, 73773193359375, 773773193359375, 5773773193359375, 15773773193359375, 515773773193359375, 7515773773193359375, 97515773773193359375
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..300
- 33rd USAMO 2003, Problem 1
- Index to sequences related to Olympiads.
Programs
-
Magma
v:=[5]; for i in [2..20] do for s in [1, 3, 5, 7, 9] do v[i]:=s*10^(i-1)+v[i-1]; if v[i] mod 5^i eq 0 then break; end if; end for; end for; v; // Marius A. Burtea, Mar 18 2019
-
Maple
a:= proc(n) option remember; local k, l; if n=1 then 5 else l:= a(n-1); for k from 1 to 9 by 2 while (parse(cat(k, l)) mod 5^n)<>0 do od; parse(cat(k, l)) fi end: seq(a(n), n=1..30); # Alois P. Heinz, Jun 18 2009
-
Mathematica
nxt[n_]:=Module[{x=FromDigits/@(Prepend[IntegerDigits[n],# ]&/@{1,3,5,7,9}),l},l=IntegerLength[n]+1;First[Select[x,Mod[ #,5^l]==0&]]]; NestList[nxt, 5, 25] (* Harvey P. Dale, Jul 06 2009 *)
Formula
a(n) = d(n)*10^(n-1) + a(n-1), where d(n), the leading digit of a(n), is one of the odd digits 1, 3, 5, 7, or 9 (forming the complete set of residues modulo 5) and is uniquely defined by the congruence: d(n) == (-a(n-1) / 10^(n-1)) (mod 5). - Max Alekseyev
Extensions
More terms from Max Alekseyev, Jun 17 2009
Further terms from Alois P. Heinz, Jun 18 2009
More terms from Harvey P. Dale, Jul 06 2009
Comments