A151821 Powers of 2, omitting 2 itself.
1, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Eric Weisstein's World of Mathematics, Chromatic Number
- Eric Weisstein's World of Mathematics, Keller Graph
- Index entries for linear recurrences with constant coefficients, signature (2).
Crossrefs
Programs
-
Haskell
a151821 n = a151821_list !! (n-1) a151821_list = x : xs where (x : _ : xs) = a000079_list -- Reinhard Zumkeller, Dec 16 2013
-
Magma
[1] cat [2^n: n in [2..35]]; // Vincenzo Librandi, Jul 21 2013
-
Mathematica
CoefficientList[Series[(1 + 2 x)/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *) DeleteCases[2^Range[0, 33], p_ /; PrimeQ @ p] (* Michael De Vlieger, Aug 06 2016 *) Join[{1}, 2^Range[2, 20]] (* Eric W. Weisstein, Nov 17 2017 *)
-
PARI
a(n)=if(n>1,2^n,1) \\ Charles R Greathouse IV, Dec 08 2015
-
PARI
Vec(x*(1+2*x)/(1-2*x) + O(x^100)) \\ Altug Alkan, Dec 09 2015
-
Python
def A151821(n): return 1<
1 else 1 # Chai Wah Wu, Jun 10 2025
Formula
G.f.: x*(1+2*x)/(1-2*x). - Philippe Deléham, Sep 17 2009
a(1) = 1 and a(n) = 3 + Sum_{k=1..n-1} a(k) for n>=2. - Joerg Arndt, Aug 15 2012
E.g.f.: exp(2*x) - x - 1. - Stefano Spezia, Jan 31 2023
Comments