A346831 Table read by rows, coefficients of the characteristic polynomials of the tangent matrices.
1, 0, 1, -1, 0, 1, 2, -1, -2, 1, 1, 0, -6, 0, 1, 4, 9, -4, -10, 0, 1, -1, 0, 15, 0, -15, 0, 1, 14, -1, -46, 19, 34, -19, -2, 1, 1, 0, -28, 0, 70, 0, -28, 0, 1, 40, 81, -88, -196, 56, 150, -8, -36, 0, 1, -1, 0, 45, 0, -210, 0, 210, 0, -45, 0, 1
Offset: 0
Examples
Table starts: [0] 1; [1] 0, 1; [2] -1, 0, 1; [3] 2, -1, -2, 1; [4] 1, 0, -6, 0, 1; [5] 4, 9, -4, -10, 0, 1; [6] -1, 0, 15, 0, -15, 0, 1; [7] 14, -1, -46, 19, 34, -19, -2, 1; [8] 1, 0, -28, 0, 70, 0, -28, 0, 1; [9] 40, 81, -88, -196, 56, 150, -8, -36, 0, 1. . The first few tangent matrices: 1 2 3 4 5 --------------------------------------------------------------- 0; -1 0; 1 -1 0; 1 -1 -1 0; 1 1 -1 -1 0; 0 1; -1 0 1; -1 -1 0 1; 1 -1 -1 0 1; 0 1 1; -1 0 1 1; -1 -1 0 1 1; 0 1 1 -1; -1 0 1 1 1; 0 1 1 1 -1;
Programs
-
Julia
using AbstractAlgebra function TangentMatrix(N) M = zeros(ZZ, N, N) H = div(N + 1, 2) for n in 1:N - 1 for k in 0:n - 1 M[n - k, k + 1] = n < H ? 1 : -1 M[N - n + k + 1, N - k] = n < N - H ? -1 : 1 end end M end function A346831Row(n) n == 0 && return [ZZ(1)] R, x = PolynomialRing(ZZ, "x") S = MatrixSpace(ZZ, n, n) M = TangentMatrix(n) c = charpoly(R, S(M)) collect(coefficients(c)) end for n in 0:9 println(A346831Row(n)) end
-
Maple
TangentMatrix := proc(N) local M, H, n, k; M := Matrix(N, N); H := iquo(N + 1, 2); for n from 1 to N - 1 do for k from 0 to n - 1 do M[n - k, k + 1] := `if`(n < H, 1, -1); M[N - n + k + 1, N - k] := `if`(n < N - H, -1, 1); od od; M end: A346831Row := proc(n) if n = 0 then return 1 fi; LinearAlgebra:-CharacteristicPolynomial(TangentMatrix(n), x); seq(coeff(%, x, k), k = 0..n) end: seq(A346831Row(n), n = 0..10);
-
Mathematica
TangentMatrix[N_] := Module[{M, H, n, k}, M = Array[0&, {N, N}]; H = Quotient[N + 1, 2]; For[n = 1, n <= N - 1, n++, For[k = 0, k <= n - 1, k++, M[[n - k, k + 1]] = If[n < H, 1, -1]; M[[N - n + k + 1, N - k]] = If[n < N - H, -1, 1]]]; M]; A346831Row[n_] := Module[{c}, If[n == 0, Return[{1}]]; c = CharacteristicPolynomial[TangentMatrix[n], x]; (-1)^n*CoefficientList[c, x]]; Table[A346831Row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 15 2024, after Peter Luschny *)
Comments