A190958
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0
Sequences of the form a(n) = c*a(n-1) - d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
-
LinearRecurrence[{2,-10}, {0,1}, 50]
-
a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
A103280
Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 9, 16, 1, 5, 14, 27, 44, 1, 6, 21, 48, 81, 120, 1, 7, 30, 85, 164, 243, 328, 1, 8, 41, 144, 341, 560, 729, 896, 1, 9, 54, 231, 684, 1365, 1912, 2187, 2448, 1, 10, 69, 352, 1289, 3240, 5461, 6528, 6561, 6688, 1, 11, 86, 513, 2276, 7175, 15336, 21845
Offset: 0
Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005
Array begins:
1,2,6,16,44,120,328,896,2448,6688,...
1,3,9,27,81,243,729,2187,6561,19683, ...
1,4,14,48,164,560,1912,6528,22288,76096,...
1,5,21,85,341,1365,5461,21845,87381,349525,...
1,6,30,144,684,3240,15336,72576,343440,1625184,...
1,7,41,231,1289,7175,39913,221991,1234633,6866503,...
...
Cf.
A103279 (for (M^n)[1, 1]),
A002605 (for N=0),
A000244 (for N=1),
A007070 (for N=2),
A002450 (for N=3),
A030192 (for N=4),
A152268 (for N=5),
A006131 (for N=-1),
A000400 (bisection for N=-2),
A015443 (for N=-3),
A083102 (for N=-4).
-
T12(N, n) = if(n==1,1,if(n==2,N+2,(N+2)*T12(N,n-1)-(2*N-2)*T12(N,n-2)))
for(k=0,10,print1(k,": ");for(i=1,10,print1(T12(k,i),","));print())
A368149
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x^2.
Original entry on oeis.org
1, 1, 2, 2, 4, 3, 3, 10, 10, 4, 5, 20, 31, 20, 5, 8, 40, 78, 76, 35, 6, 13, 76, 184, 232, 161, 56, 7, 21, 142, 406, 636, 582, 308, 84, 8, 34, 260, 861, 1604, 1831, 1296, 546, 120, 9, 55, 470, 1766, 3820, 5215, 4630, 2640, 912, 165, 10, 89, 840, 3533, 8696
Offset: 1
First eight rows:
1
1 2
2 4 3
3 10 10 4
5 20 31 20 5
8 40 78 76 35 6
13 76 184 232 161 56 7
21 142 406 636 582 308 84 8
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 10*x^2 + 4*x^3, so (T(4,k)) = (3,10,10,4), k=0..3.
Cf.
A000045 (column 1);
A000027 (p(n,n-1));
A000244 (row sums), (p(n,1));
A033999 (alternating row sums), (p(n,-1));
A116415 (p(n,2)),
A000748, (p(n,-2));
A152268, (p(n,3));
A190969, (p(n,-3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150.
-
p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Showing 1-3 of 3 results.
Comments