cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A152313 Primes without 0's or primes in their decimal expansion.

Original entry on oeis.org

11, 19, 41, 61, 89, 149, 181, 191, 199, 419, 449, 461, 491, 499, 619, 641, 661, 691, 811, 881, 911, 919, 941, 991, 1181, 1481, 1489, 1499, 1619, 1669, 1699, 1811, 1861, 1889, 1949, 1999, 4111, 4441, 4481, 4649, 4691, 4861, 4889, 4919, 4969, 4999
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2008

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5000) | Set(Intseq(p))  subset [1,4,6,8,9]]; // Vincenzo Librandi, Oct 25 2016
  • Maple
    F:= proc(d) local T, R, L, r;
       R:= NULL;
       T:= combinat:-cartprod([[1,4,6,8,9]$d]);
       while not T[finished] do
         L:= T[nextvalue]();
         r:= add(L[i]*10^(d-i),i=1..d);
         if isprime(r) then R:= R,r fi
       od;
    R
    end proc:
    seq(F(d),d=2..5); # Robert Israel, Dec 07 2017
  • Mathematica
    Select[Prime[Range[800]], Complement[IntegerDigits[#], {1, 4, 6, 8, 9}] == {} &] (* Vincenzo Librandi, Oct 25 2016 *)

A152426 Primes that have both prime digits (2,3,5,7) and nonprime digits (0,1,4,6,8,9).

Original entry on oeis.org

13, 17, 29, 31, 43, 47, 59, 67, 71, 79, 83, 97, 103, 107, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 193, 197, 211, 229, 239, 241, 251, 263, 269, 271, 281, 283, 293, 307, 311, 313, 317, 331, 347, 349, 359, 367, 379
Offset: 1

Views

Author

Omar E. Pol, Dec 03 2008

Keywords

Comments

See also A152427, a subsequence without zeros.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{d=Union[IntegerDigits[n]]}, Length[Intersection[d, {2,3,5,7}]]>0 && Length[Intersection[d, {0,1,4,6,8,9}]]>0]; Select[Prime[Range[100]], okQ] (* T. D. Noe, Jan 20 2011 *)

Extensions

Edited by Omar E. Pol, Jul 04 2009, Jan 20 2011
Definition clarified by N. J. A. Sloane, Jul 05 2009

A152427 Primes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9).

Original entry on oeis.org

13, 17, 29, 31, 43, 47, 59, 67, 71, 79, 83, 97, 103, 107, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 193, 197, 211, 229, 239, 241, 251, 263, 269, 271, 281, 283, 293, 311, 313, 317, 331, 347, 349, 359, 367, 379, 383, 389, 397, 421, 431, 433, 439
Offset: 1

Views

Author

Omar E. Pol, Dec 03 2008

Keywords

Comments

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{d = Union[IntegerDigits[n]]}, Length[Intersection[d, {2, 3, 5, 7}]] > 0 && Length[Intersection[d, {1, 4, 6, 8, 9}]] > 0]; Select[Prime[Range[100]], okQ] (* T. D. Noe, Jan 21 2011 *)
    pdQ[n_]:=Module[{idn=Select[IntegerDigits[n],#!=0&]},Count[idn,?PrimeQ]>0&&Count[idn,?(!PrimeQ[#]&)]>0]; Select[Prime[Range[100]],pdQ] (* Harvey P. Dale, Jan 31 2013 *)

Formula

a(n) ~ n log n

Extensions

Corrected and extended by Harvey P. Dale, Jan 31 2013

A220488 Primes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9), without digits "0".

Original entry on oeis.org

13, 17, 29, 31, 43, 47, 59, 67, 71, 79, 83, 97, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 193, 197, 211, 229, 239, 241, 251, 263, 269, 271, 281, 283, 293, 311, 313, 317, 331, 347, 349, 359, 367, 379, 383, 389, 397, 421, 431, 433, 439
Offset: 1

Views

Author

Omar E. Pol, Feb 01 2013

Keywords

Comments

For similar sequences see A152426 and A152427.

Crossrefs

Programs

Showing 1-4 of 4 results.