cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A034844 Primes with only nonprime decimal digits.

Original entry on oeis.org

11, 19, 41, 61, 89, 101, 109, 149, 181, 191, 199, 401, 409, 419, 449, 461, 491, 499, 601, 619, 641, 661, 691, 809, 811, 881, 911, 919, 941, 991, 1009, 1019, 1049, 1061, 1069, 1091, 1109, 1181, 1409, 1481, 1489, 1499, 1601, 1609, 1619, 1669, 1699, 1801, 1811
Offset: 1

Views

Author

Keywords

Comments

A109066(n) = 0 iff prime(n) is in this sequence. [Reinhard Zumkeller, Jul 11 2010, corrected by M. F. Hasler, Aug 27 2012]
Or, primes p such that A193238(p) = 0. - M. F. Hasler, Aug 27 2012
Intersection of A084984 and A000040; complement of A179336 (within the primes A000040). [Reinhard Zumkeller, Jul 19 2011, edited by M. F. Hasler, Aug 27 2012]
The smallest prime that contains all the six nonprime decimal digits is a(694) = 104869 (see Prime Curios! link). - Bernard Schott, Mar 21 2023

Examples

			E.g. 149 is a prime made of nonprime digits(1,4,9).
991 is a prime without any prime digits.
		

Crossrefs

Programs

  • Haskell
    a034844 n = a034844_list !! (n-1)
    a034844_list = filter (not . any  (`elem` "2357") . show ) a000040_list
    -- Reinhard Zumkeller, Jul 19 2011
    
  • Magma
    [p: p in PrimesUpTo(2000) | forall{d: d in [2,3,5,7] | d notin Set(Intseq(p))}];  // Bruno Berselli, Jul 27 2011
    
  • Mathematica
    Select[Prime[Range[279]], Intersection[IntegerDigits[#], {2, 3, 5, 7}] == {} &] (* Jayanta Basu, Apr 18 2013 *)
    Union[Select[Flatten[Table[FromDigits/@Tuples[{1,4,6,8,9,0},n],{n,2,4}]],PrimeQ]] (* Harvey P. Dale, Dec 08 2014 *)
  • PARI
    is_A034844(n)=isprime(n)&!apply(x->isprime(x),eval(Vec(Str(n)))) \\ M. F. Hasler, Aug 27 2012
    
  • PARI
    is_A034844(n)=isprime(n)&!setintersect(Set(Vec(Str(n))),Vec("2357")) \\ M. F. Hasler, Aug 27 2012
    
  • Python
    from sympy import isprime
    from itertools import product
    def auptod(maxdigits):
        alst = []
        for d in range(1, maxdigits+1):
            for p in product("014689", repeat=d-1):
                if d > 1 and p[0] == "0": continue
                for end in "19":
                    s = "".join(p) + end
                    t = int(s)
                    if isprime(t): alst.append(t)
        return alst
    print(auptod(4)) # Michael S. Branicky, Nov 19 2021

Formula

a(n) >> n^1.285. [Charles R Greathouse IV, Feb 20 2012]

Extensions

Edited by N. J. A. Sloane, Feb 22 2009 at the suggestion of R. J. Mathar

A051416 Primes whose digits are composite; primes having only {4, 6, 8, 9} as digits.

Original entry on oeis.org

89, 449, 499, 4649, 4889, 4969, 4999, 6449, 6469, 6689, 6869, 6899, 6949, 8669, 8689, 8699, 8849, 8969, 8999, 9649, 9689, 9949, 44449, 44699, 46489, 46499, 46649, 46889, 48449, 48649, 48869, 48889, 48989, 49499, 49669, 49999, 64489, 64499, 64849, 64969, 66449
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 17 2000

Keywords

Comments

Primes formed by using only digits 4, 6, 8, 9. Of course, all the terms of this sequence end with 9. - Bernard Schott, Jan 31 2019

Examples

			89 is the smallest composite-digit prime and also the only composite-digit prime whose digits are distinct. - _Bernard Schott_, Jan 31 2019
		

Crossrefs

Cf. A019546 (with prime digits), A030096 (with odd digits), A061246 (with square digits), A061371 (composite numbers with prime digits).
Subsequence of A061372 and of A152313.

Programs

  • Mathematica
    Select[Prime@Range[6500], Intersection[IntegerDigits[ # ], {0, 1, 2, 3, 5, 7}] == {} & ] (* Ray Chandler, Mar 04 2007 *)
    With[{c = {4, 6, 8, 9}}, Array[Select[Map[FromDigits@ Append[#, 9] &, Tuples[c, {#}]], PrimeQ] &, 4]] // Flatten (* Michael De Vlieger, Feb 02 2019 *)

Extensions

Extended by Ray Chandler, Mar 04 2007

A152426 Primes that have both prime digits (2,3,5,7) and nonprime digits (0,1,4,6,8,9).

Original entry on oeis.org

13, 17, 29, 31, 43, 47, 59, 67, 71, 79, 83, 97, 103, 107, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 193, 197, 211, 229, 239, 241, 251, 263, 269, 271, 281, 283, 293, 307, 311, 313, 317, 331, 347, 349, 359, 367, 379
Offset: 1

Views

Author

Omar E. Pol, Dec 03 2008

Keywords

Comments

See also A152427, a subsequence without zeros.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{d=Union[IntegerDigits[n]]}, Length[Intersection[d, {2,3,5,7}]]>0 && Length[Intersection[d, {0,1,4,6,8,9}]]>0]; Select[Prime[Range[100]], okQ] (* T. D. Noe, Jan 20 2011 *)

Extensions

Edited by Omar E. Pol, Jul 04 2009, Jan 20 2011
Definition clarified by N. J. A. Sloane, Jul 05 2009

A152427 Primes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9).

Original entry on oeis.org

13, 17, 29, 31, 43, 47, 59, 67, 71, 79, 83, 97, 103, 107, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 193, 197, 211, 229, 239, 241, 251, 263, 269, 271, 281, 283, 293, 311, 313, 317, 331, 347, 349, 359, 367, 379, 383, 389, 397, 421, 431, 433, 439
Offset: 1

Views

Author

Omar E. Pol, Dec 03 2008

Keywords

Comments

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{d = Union[IntegerDigits[n]]}, Length[Intersection[d, {2, 3, 5, 7}]] > 0 && Length[Intersection[d, {1, 4, 6, 8, 9}]] > 0]; Select[Prime[Range[100]], okQ] (* T. D. Noe, Jan 21 2011 *)
    pdQ[n_]:=Module[{idn=Select[IntegerDigits[n],#!=0&]},Count[idn,?PrimeQ]>0&&Count[idn,?(!PrimeQ[#]&)]>0]; Select[Prime[Range[100]],pdQ] (* Harvey P. Dale, Jan 31 2013 *)

Formula

a(n) ~ n log n

Extensions

Corrected and extended by Harvey P. Dale, Jan 31 2013

A220488 Primes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9), without digits "0".

Original entry on oeis.org

13, 17, 29, 31, 43, 47, 59, 67, 71, 79, 83, 97, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 193, 197, 211, 229, 239, 241, 251, 263, 269, 271, 281, 283, 293, 311, 313, 317, 331, 347, 349, 359, 367, 379, 383, 389, 397, 421, 431, 433, 439
Offset: 1

Views

Author

Omar E. Pol, Feb 01 2013

Keywords

Comments

For similar sequences see A152426 and A152427.

Crossrefs

Programs

A215927 Primes having at least one digit that is not prime.

Original entry on oeis.org

11, 13, 17, 19, 29, 31, 41, 43, 47, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 229, 239, 241, 251, 263, 269, 271, 281, 283, 293, 307, 311, 313, 317, 331, 347
Offset: 1

Views

Author

Luca Brigada Villa, Aug 27 2012

Keywords

Comments

Complement of A019546 within the primes A000040.

Examples

			19 is in the sequence because neither of its two digits is prime, 1 being a unit and 9 being the square of 3.
23 is not in the sequence because both 2 and 3 are prime.
29 is in the sequence because 9 is not prime (though 2 is).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(500) | not Set(Intseq(p)) subset [2,3,5,7]]; // Vincenzo Librandi Oct 25 2016
  • Mathematica
    Select[Prime[Range[100]], Complement[IntegerDigits[#], {2, 3, 5, 7}] != {} &] (* Alonso del Arte, Aug 27 2012 *)
  • PARI
    is_A215927(n)=isprime(n)&apply(x->!isprime(x),eval(Vec(Str(n)))) \\ - M. F. Hasler, Aug 27 2012
    

Extensions

a(55) corrected by Vincenzo Librandi, Oct 25 2016

A323391 Primes containing nonprime digits (from 1 to 9) in their decimal expansion and whose digits are distinct, i.e., consisting of only digits 1, 4, 6, 8, 9.

Original entry on oeis.org

19, 41, 61, 89, 149, 419, 461, 491, 619, 641, 691, 941, 1489, 4691, 4861, 6481, 6491, 6841, 8419, 8461, 8641, 8941, 9461, 14869, 46819, 48619, 49681, 64189, 64891, 68491, 69481, 81649, 84691, 84961, 86491, 98641
Offset: 1

Views

Author

Bernard Schott, Jan 13 2019

Keywords

Comments

There are only 36 terms in this sequence, which is a finite subsequence of A152313.
Two particular examples:
6481 is also the smallest prime formed from the concatenation of two consecutive squares.
81649 is the only prime containing all the nonprime positive digits such that every string of two consecutive digits is a square.

Examples

			14869 is the smallest prime that contains all the nonprime positive digits; 98641 is the largest one.
		

Crossrefs

Subsequence of A152313. Subsequence of A029743. Subsequence of A155024 (with distinct nonprime digits but with 0) and of A034844.
Cf. A029743 (with distinct digits), A124674 (with distinct prime digits), A155045 (with distinct odd digits), A323387 (with distinct square digits), A323578 (with distinct digits for which parity of digits alternates).

Programs

  • Mathematica
    Select[Union@ Flatten@ Map[FromDigits /@ Permutations@ # &, Rest@ Subsets@ {1, 4, 6, 8, 9}], PrimeQ] (* Michael De Vlieger, Jan 19 2019 *)
  • PARI
    isok(p) = isprime(p) && (d=digits(p)) && vecmin(d) && (#Set(d) == #d) && (#select(x->isprime(x), d) == 0); \\ Michel Marcus, Jan 14 2019
Showing 1-7 of 7 results.