cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A243351 Difference between 2n and the n-th squarefree number: a(n) = 2n - A005117(n).

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9, 8, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 14, 15, 13, 13, 13, 13, 14, 15, 15, 16, 15, 16, 17, 17, 18, 19, 19, 20, 19, 20, 21, 20, 21, 21, 22, 23, 23, 23, 23, 24, 25, 25, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{sf=Select[Range[150],SquareFreeQ]},Table[2n-sf[[n]],{n,Length[ sf]}]] (* Harvey P. Dale, Jun 26 2021 *)
  • Python
    from math import isqrt
    from sympy import mobius
    def A243351(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return (n<<1)-m # Chai Wah Wu, Aug 12 2024

Formula

a(n) = 2n - A005117(n).
a(n) = n - A243348(n).
a(n) ~ c * n, where c = 2 - Pi^2/6 (A152416). - Amiram Eldar, Mar 04 2024

A354238 Decimal expansion of 1 - Pi^2/12.

Original entry on oeis.org

1, 7, 7, 5, 3, 2, 9, 6, 6, 5, 7, 5, 8, 8, 6, 7, 8, 1, 7, 6, 3, 7, 9, 2, 4, 1, 6, 6, 7, 6, 9, 8, 7, 4, 0, 5, 3, 9, 0, 5, 2, 5, 0, 4, 9, 3, 9, 6, 6, 0, 0, 7, 8, 1, 1, 3, 2, 2, 2, 0, 8, 8, 5, 3, 1, 4, 9, 9, 6, 2, 6, 4, 7, 9, 8, 3, 9, 9, 5, 6, 3, 0, 8, 3, 1, 8, 5, 5, 4, 9, 6, 9, 0, 1, 2, 0, 6, 4, 7, 3, 4, 7, 9, 9, 7
Offset: 0

Views

Author

Omar E. Pol, May 20 2022

Keywords

Comments

Ratio of area between the polygon that is adjacent in the same plane to the base of the stepped pyramid with an infinite number of levels described in A245092 and the circumscribed square (see the first formula).

Examples

			0.177532966575886781763792416676987405390525049396600781132220885314996264798...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013.

Crossrefs

Programs

  • Mathematica
    RealDigits[1 - Pi^2/12, 10, 100][[1]] (* Amiram Eldar, May 20 2022 *)
  • PARI
    1-Pi^2/12
    
  • PARI
    1-zeta(2)/2

Formula

Equals lim_{n->infinity} A004125(n)/(n^2).
Equals 1 - A013661/2.
Equals 1 - A072691.
Equals A152416/2.
Equals Sum_{k>=1} 1/(2*k*(k+1)^2). - Amiram Eldar, May 20 2022
Equals -1/4 + Sum_{k>=2} (-1)^k * k * (k - Sum_{i=2..k} zeta(i)) (Furdui, 2013 problem). - Amiram Eldar, Jun 09 2022
Equals Integral_{x>=1} {x}/x^3 dx where {.} is the fractional part. [Nahin]. R. J. Mathar, May 22 2024
From Amiram Eldar, Jul 31 2025: (Start)
Equals Integral_{x=0..1} {1/x} * x dx (Furdui, 2013 book, section 2.21, page 103).
Equals Integral_{x=0..1} Integral_{y=0..1} {x/y}*{y/x} dx dy, where {} denotes fractional part (Furdui, 2008 and 2013 book, section 2.36, page 105). (End)

A152419 Decimal expansion of 3-Pi^2/6-zeta(3).

Original entry on oeis.org

1, 5, 3, 0, 0, 9, 0, 2, 9, 9, 9, 2, 1, 7, 9, 2, 7, 8, 1, 2, 7, 8, 4, 6, 6, 7, 1, 8, 4, 2, 5, 2, 4, 8, 2, 0, 0, 1, 6, 0, 6, 3, 8, 0, 6, 4, 5, 2, 7, 0, 2, 6, 8, 0, 4, 7, 2, 1, 7, 0, 2, 1, 5, 2, 8, 8, 1, 5, 4, 3, 2, 3, 8, 1, 0, 4, 8, 6, 0, 3, 5, 9, 7, 9, 9, 1, 5, 2, 2, 5, 7, 7, 0, 9, 0, 6, 0, 3, 6, 5, 4, 9, 7, 9, 6
Offset: 0

Views

Author

R. J. Mathar, Dec 03 2008

Keywords

Comments

Consider the constants N(s) = Sum_{n>=2} 1/(n^s*(n-1)) = s-Sum_{k=2..s} zeta(k), where zeta() is Riemann's zeta function. We have N(1)=1 and this constant here is N(3).

Examples

			0.15300902999217927812784667184252482001606380645270268047217021528815...
		

Crossrefs

Cf. A013661 (Pi^2/6), A002117 (zeta(3)).
Cf. A152416.

Programs

  • Maple
    evalf(3-Pi^2/6-Zeta(3));
  • Mathematica
    RealDigits[3-Pi^2/6-Zeta[3],10,120][[1]] (* Harvey P. Dale, Jul 01 2022 *)
  • PARI
    3-Pi^2/6-zeta(3) \\ Charles R Greathouse IV, Jan 31 2017
    
  • Sage
    t(n) = 1/(n*(n+1)^(3));
    sum(t(n), n, 1, oo).n(digits=107); # Jani Melik, Nov 20 2020

Formula

Equals 3-A013661-A002117.

A262605 Decimal expansion of Integral_{0..1} log(1-x)*log(x)^2 dx (negated).

Original entry on oeis.org

3, 0, 6, 0, 1, 8, 0, 5, 9, 9, 8, 4, 3, 5, 8, 5, 5, 6, 2, 5, 5, 6, 9, 3, 3, 4, 3, 6, 8, 5, 0, 4, 9, 6, 4, 0, 0, 3, 2, 1, 2, 7, 6, 1, 2, 9, 0, 5, 4, 0, 5, 3, 6, 0, 9, 4, 4, 3, 4, 0, 4, 3, 0, 5, 7, 6, 3, 0, 8, 6, 4, 7, 6, 2, 0, 9, 7, 2, 0, 7, 1, 9, 5, 9, 8, 3, 0, 4, 5, 1, 5, 4, 1, 8, 1, 2, 0, 7, 3, 0, 9, 9, 5, 9, 3
Offset: 0

Views

Author

Jean-François Alcover, Sep 26 2015

Keywords

Examples

			-0.30601805998435855625569334368504964003212761290540536094434 ...
		

Crossrefs

Cf. A152416 (Integral_{0..1} log(1-x)*log(x) dx), A262606 (Integral_{0..1} log(1-x)^2*log(x)^2 dx).

Programs

  • Mathematica
    RealDigits[Integrate[Log[1 - x]*Log[x]^2, {x, 0, 1}] , 10,
      105] // First
  • PARI
    -(-6 + Pi^2/3 + 2*zeta(3)) \\ Michel Marcus, Sep 27 2015

Formula

Equals -6 + Pi^2/3 + 2 zeta(3).
Equals Integral_{0..Pi/2} log(cos(x)^2) * log(sin(x)^2)^2 * sin(2x) dx.

A262606 Decimal expansion of Integral_{0..1} log(1-x)^2*log(x)^2 dx (negated).

Original entry on oeis.org

1, 4, 1, 7, 4, 9, 0, 0, 6, 2, 2, 6, 2, 9, 6, 0, 3, 3, 5, 0, 6, 7, 6, 9, 6, 7, 8, 1, 9, 9, 0, 3, 0, 6, 5, 7, 3, 5, 3, 7, 5, 9, 4, 9, 9, 7, 0, 2, 8, 9, 4, 5, 3, 6, 0, 9, 4, 3, 8, 5, 5, 0, 6, 8, 6, 1, 1, 1, 3, 9, 7, 4, 2, 9, 6, 9, 1, 9, 4, 4, 1, 2, 8, 2, 4, 1, 2, 1, 7, 0, 2, 2, 5, 5, 4, 8, 3, 7, 5, 1, 6, 5, 3, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, Sep 26 2015

Keywords

Examples

			0.141749006226296033506769678199030657353759499702894536 ...
		

Crossrefs

Cf. A152416 (Integral_{0..1} log(1-x)*log(x) dx), A262605 (Integral_{0..1} log(1-x)*log(x)^2 dx).

Programs

  • Mathematica
    RealDigits[24 - 4*Pi^2/3 - Pi^4/90 - 8 Zeta[3], 10, 105] // First
  • PARI
    24 - 4*Pi^2/3 - Pi^4/90 - 8*zeta(3) \\ Michel Marcus, Sep 27 2015

Formula

Equals 24 - 4 Pi^2/3 - Pi^4/90 - 8 zeta(3).
Also equals Integral_{0..Pi/2} log(cos(x)^2)^2 * log(sin(x)^2)^2 * sin(2x) dx.

A373702 Decimal expansion of (2 - zeta(2))*zeta(2)*zeta(3)/zeta(6).

Original entry on oeis.org

6, 9, 0, 1, 0, 4, 8, 8, 2, 5, 1, 0, 2, 2, 4, 9, 7, 8, 1, 8, 7, 7, 3, 0, 0, 2, 5, 6, 7, 8, 2, 7, 5, 3, 2, 6, 4, 4, 0, 6, 6, 6, 2, 3, 1, 3, 1, 3, 3, 4, 8, 1, 2, 5, 4, 9, 1, 2, 2, 2, 9, 4, 2, 6, 0, 2, 0, 9, 9, 0, 1, 7, 1, 6, 8, 7, 3, 3, 7, 4, 6, 7, 2, 7, 9, 2, 6, 7, 8, 9, 1, 5, 0, 4, 0, 0, 5, 2, 5, 2
Offset: 0

Views

Author

Stefano Spezia, Jun 13 2024

Keywords

Examples

			0.69010488251022497818773002567827532644066623131...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2-Zeta[2])Zeta[2]Zeta[3]/Zeta[6],10,100][[1]]
Showing 1-6 of 6 results.