cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A055937 a(n) = a(n-1) * a(n-2) - 1.

Original entry on oeis.org

2, 2, 3, 5, 14, 69, 965, 66584, 64253559, 4278258972455, 274893365303916717344, 1176065006579831683931038116759519, 323292467474902888912311701915651931811127805144397535
Offset: 1

Views

Author

Robert G. Wilson v, Jul 05 2000

Keywords

Crossrefs

A152446 uses largest prime < a(n-1)*a(n-2) instead of subtracting 1. - Joshua D. Olson, Sep 29 2015

Programs

  • Magma
    I:=[2,2]; [n le 2 select I[n] else Self(n-1)*Self(n-2)-1: n in [1..15]]; // Vincenzo Librandi, Sep 30 2015
    
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==2, a[n]==a[n-1]*a[n-2] -1}, a, {n, 15}] (* Vincenzo Librandi, Sep 30 2015 *)
    nxt[{a_,b_}]:={b,a*b-1}; NestList[nxt,{2,2},15][[All,1]] (* Harvey P. Dale, Dec 05 2020 *)
  • PARI
    a(n) = if(n<3, 2, a(n-1)*a(n-2)-1);
    vector(15, n, a(n)) \\ Altug Alkan, Sep 30 2015
    
  • Sage
    @cached_function
    def a(n):
        if n == 1 or n == 2:
            return 2
        else:
            return a(n - 1) * a(n - 2) - 1
    [a(n) for n in range(1, 16)]  # G. C. Greubel, Jun 07 2019

Formula

a(n) ~ c^(phi^n), where c = 1.26679081808631741720378389711... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 15 2019

A152445 a(0) = a(1) = 1. For n >= 2, a(n) = the smallest prime >= a(n-1)*a(n-2).

Original entry on oeis.org

1, 1, 2, 2, 5, 11, 59, 653, 38543, 25168589, 970072925867, 24415366771173991757, 23684686279828682858246730078719, 578270302382209771209755703072864217352250067119367
Offset: 0

Views

Author

Leroy Quet, Dec 04 2008

Keywords

Crossrefs

Programs

  • Maple
    A152445 := proc(n) option remember ; if n <= 1 then 1; else nextprime(procname(n-1)*procname(n-2)-1) ; fi; end: for n from 0 to 15 do printf("%d,",A152445(n)) ; od; # R. J. Mathar, Dec 05 2008
  • Mathematica
    a = {1, 1, 2, 2}; Do[AppendTo[a, Prime[PrimePi[a[[ -1]]*a[[ -2]]] + 1]], {7}]; a (* Stefan Steinerberger, Dec 06 2008 *)
    nxt[{a_,b_}]:={b,NextPrime[a*b-1]}; NestList[nxt,{1,1},15][[All,1]] (* Harvey P. Dale, Jun 30 2020 *)

Extensions

Extended beyond a(7) by R. J. Mathar, Stefan Steinerberger and Ray Chandler, Dec 05 2008
Showing 1-2 of 2 results.