cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152449 Primes of the form 2^j - 2^k + 1, where j > k >= 0.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 29, 31, 61, 97, 113, 127, 193, 241, 257, 449, 509, 769, 1009, 1021, 2017, 4093, 7681, 7937, 8161, 8191, 12289, 15361, 16369, 16381, 32257, 61441, 64513, 65521, 65537, 114689, 130817, 131009, 131041, 131071, 520193, 523777
Offset: 1

Views

Author

Leroy Quet, Dec 04 2008

Keywords

Comments

This sequence contains the primes that are each one more than any term of sequence A023758.
In binary these primes are represented, reading left to right, as some number of 1's, followed by some number of 0's (possibly no 0's), followed finally by one 1 as the rightmost digit.
All odd terms p satisfy the property that (p NOR (p-2))=0. - Gary Detlefs, May 03 2019

Crossrefs

Cf. A023758.

Programs

  • Maple
    isA000079 := proc(n) local i ; RETURN( add(i,i=convert(n,base,2)) = 1 ) ; end : isA000225 := proc(n) isA000079(n+1) ; end: A007814 := proc(n) local p2,a,p ; a := 0 ; p2 := ifactors(n)[2] ; for p in p2 do if op(1,p) = 2 then a := op(2,p) ; fi; od; RETURN(a) ; end: isA023758 := proc(n) local ord ; ord := A007814(n) ; RETURN ( isA000225(n/2^ord) ) ; end: isA152449 := proc(n) local ord,np1 ; if isprime(n) then RETURN ( isA023758(n-1) ) ; else false; fi; end: for i from 1 to 100000 do p := ithprime(i) ; if isA152449(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Dec 05 2008
  • Mathematica
    Select[Union[Flatten[Table[2^j-2^k+1,{j,20},{k,0,j-1}]]],PrimeQ] (* Harvey P. Dale, Mar 14 2018 *)

Extensions

Extended by R. J. Mathar, Stefan Steinerberger and Ray Chandler, Dec 05 2008