A152449 Primes of the form 2^j - 2^k + 1, where j > k >= 0.
2, 3, 5, 7, 13, 17, 29, 31, 61, 97, 113, 127, 193, 241, 257, 449, 509, 769, 1009, 1021, 2017, 4093, 7681, 7937, 8161, 8191, 12289, 15361, 16369, 16381, 32257, 61441, 64513, 65521, 65537, 114689, 130817, 131009, 131041, 131071, 520193, 523777
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A023758.
Programs
-
Maple
isA000079 := proc(n) local i ; RETURN( add(i,i=convert(n,base,2)) = 1 ) ; end : isA000225 := proc(n) isA000079(n+1) ; end: A007814 := proc(n) local p2,a,p ; a := 0 ; p2 := ifactors(n)[2] ; for p in p2 do if op(1,p) = 2 then a := op(2,p) ; fi; od; RETURN(a) ; end: isA023758 := proc(n) local ord ; ord := A007814(n) ; RETURN ( isA000225(n/2^ord) ) ; end: isA152449 := proc(n) local ord,np1 ; if isprime(n) then RETURN ( isA023758(n-1) ) ; else false; fi; end: for i from 1 to 100000 do p := ithprime(i) ; if isA152449(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Dec 05 2008
-
Mathematica
Select[Union[Flatten[Table[2^j-2^k+1,{j,20},{k,0,j-1}]]],PrimeQ] (* Harvey P. Dale, Mar 14 2018 *)
Comments