cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A023758 Numbers of the form 2^i - 2^j with i >= j.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 192, 224, 240, 248, 252, 254, 255, 256, 384, 448, 480, 496, 504, 508, 510, 511, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023
Offset: 1

Views

Author

Keywords

Comments

Numbers whose digits in base 2 are in nonincreasing order.
Might be called "nialpdromes".
Subset of A077436. Proof: Since a(n) is of the form (2^i-1)*2^j, i,j >= 0, a(n)^2 = (2^(2i) - 2^(i+1))*2^(2j) + 2^(2j) where the first sum term has i-1 one bits and its 2j-th bit is zero, while the second sum term switches the 2j-th bit to one, giving i one bits, as in a(n). - Ralf Stephan, Mar 08 2004
Numbers whose binary representation contains no "01". - Benoit Cloitre, May 23 2004
Every polynomial with coefficients equal to 1 for the leading terms and 0 after that, evaluated at 2. For instance a(13) = x^4 + x^3 + x^2 at 2, a(14) = x^4 + x^3 + x^2 + x at 2. - Ben Paul Thurston, Jan 11 2008
From Gary W. Adamson, Jul 18 2008: (Start)
As a triangle by rows starting:
1;
2, 3;
4, 6, 7;
8, 12, 14, 15;
16, 24, 28, 30, 31;
...,
equals A000012 * A130123 * A000012, where A130123 = (1, 0,2; 0,0,4; 0,0,0,8; ...). Row sums of this triangle = A000337 starting (1, 5, 17, 49, 129, ...). (End)
First differences are A057728 = 1; 1; 1; 1; 2,1; 1; 4,2,1; 1; 8,4,2,1; 1; ... i.e., decreasing powers of 2, separated by another "1". - M. F. Hasler, May 06 2009
Apart from first term, numbers that are powers of 2 or the sum of some consecutive powers of 2. - Omar E. Pol, Feb 14 2013
From Andres Cicuttin, Apr 29 2016: (Start)
Numbers that can be digitally generated with twisted ring (Johnson) counters. This is, the binary digits of a(n) correspond to those stored in a shift register where the input bit of the first bit storage element is the inverted output of the last storage element. After starting with all 0’s, each new state is obtained by rotating the stored bits but inverting at each state transition the last bit that goes to the first position (see link).
Examples: for a(n) represented by three bits
Binary
a(5)= 4 -> 100 last bit = 0
a(6)= 6 -> 110 first bit = 1 (inverted last bit of previous number)
a(7)= 7 -> 111
and for a(n) represented by four bits
Binary
a(8) = 8 -> 1000
a(9) = 12 -> 1100 last bit = 0
a(10)= 14 -> 1110 first bit = 1 (inverted last bit of previous number)
a(11)= 15 -> 1111
(End)
Powers of 2 represented in bases which are terms of this sequence must always contain at least one digit which is also a power of 2. This is because 2^i mod (2^i - 2^j) = 2^j, which means the last digit always cycles through powers of 2 (or if i=j+1 then the first digit is a power of 2 and the rest are trailing zeros). The only known non-member of this sequence with this property is 5. - Ely Golden, Sep 05 2017
Numbers k such that k = 2^(1 + A000523(k)) - 2^A007814(k). - Daniel Starodubtsev, Aug 05 2021
A002260(n) = v(a(n)/2^v(a(n))+1) and A002024(n) = A002260(n) + v(a(n)) where v is the dyadic valuation (i.e., A007814). - Lorenzo Sauras Altuzarra, Feb 01 2023

Examples

			a(22) = 64 = 32 + 32 = 2^5 + a(16) = 2^A003056(20) + a(22-5-1).
a(23) = 96 = 64 + 32 = 2^6 + a(16) = 2^A003056(21) + a(23-6-1).
a(24) = 112 = 64 + 48 = 2^6 + a(17) = 2^A003056(22) + a(24-6-1).
		

Crossrefs

A000337(r) = sum of row T(r, c) with 0 <= c < r. See also A002024, A003056, A140129, A140130, A221975.
Cf. A007088, A130123, A101082 (complement), A340375 (characteristic function).
This is the base-2 version of A064222. First differences are A057728.
Subsequence of A077436, of A129523, of A277704, and of A333762.
Subsequences: A043569 (nonzero even terms, or equally, nonzero terms doubled), A175332, A272615, A335431, A000396 (its even terms only), A324200.
Positions of zeros in A049502, A265397, A277899, A284264.
Positions of ones in A283983, A283989.
Positions of nonzero terms in A341509 (apart from the initial zero).
Positions of squarefree terms in A260443.
Fixed points of A264977, A277711, A283165, A334666.
Distinct terms in A340632.
Cf. also A309758, A309759, A309761 (for analogous sequences).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a023758 n = a023758_list !! (n-1)
    a023758_list = 0 : f (singleton 1) where
    f s = x : f (if even x then insert z s' else insert z $ insert (z+1) s')
    where z = 2*x; (x, s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 24 2014, Dec 19 2012
    
  • Maple
    a:=proc(n) local n2,d: n2:=convert(n,base,2): d:={seq(n2[j]-n2[j-1],j=2..nops(n2))}: if n=0 then 0 elif n=1 then 1 elif d={0,1} or d={0} or d={1} then n else fi end: seq(a(n),n=0..2100); # Emeric Deutsch, Apr 22 2006
  • Mathematica
    Union[Flatten[Table[2^i - 2^j, {i, 0, 100}, {j, 0, i}]]] (* T. D. Noe, Mar 15 2011 *)
    Select[Range[0, 2^10], NoneTrue[Differences@ IntegerDigits[#, 2], # > 0 &] &] (* Michael De Vlieger, Sep 05 2017 *)
  • PARI
    for(n=0,2500,if(prod(k=1,length(binary(n))-1,component(binary(n),k)+1-component(binary(n),k+1))>0,print1(n,",")))
    
  • PARI
    A023758(n)= my(r=round(sqrt(2*n--))); (1<<(n-r*(r-1)/2)-1)<<(r*(r+1)/2-n)
    /* or, to illustrate the "decreasing digit" property and analogy to A064222: */
    A023758(n,show=0)={ my(a=0); while(n--, show & print1(a","); a=vecsort(binary(a+1)); a*=vector(#a,j,2^(j-1))~); a} \\ M. F. Hasler, May 06 2009
    
  • PARI
    is(n)=if(n<5,1,n>>=valuation(n,2);n++;n>>valuation(n,2)==1) \\ Charles R Greathouse IV, Jan 04 2016
    
  • PARI
    list(lim)=my(v=List([0]),t); for(i=1,logint(lim\1+1,2), t=2^i-1; while(t<=lim, listput(v,t); t*=2)); Set(v) \\ Charles R Greathouse IV, May 03 2016
    
  • Python
    def a_next(a_n): return (a_n | (a_n >> 1)) + (a_n & 1)
    a_n = 1; a = [0]
    for i in range(55): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 19 2022
    
  • Python
    from math import isqrt
    def A023758(n): return (1<<(m:=isqrt(n-1<<3)+1>>1))-(1<<(m*(m+1)-(n-1<<1)>>1)) # Chai Wah Wu, Feb 23 2025

Formula

a(n) = 2^s(n) - 2^((s(n)^2 + s(n) - 2n)/2) where s(n) = ceiling((-1 + sqrt(1+8n))/2). - Sam Alexander, Jan 08 2005
a(n) = 2^k + a(n-k-1) for 1 < n and k = A003056(n-2). The rows of T(r, c) = 2^r-2^c for 0 <= c < r read from right to left produce this sequence: 1; 2, 3; 4, 6, 7; 8, 12, 14, 15; ... - Frank Ellermann, Dec 06 2001
For n > 0, a(n) mod 2 = A010054(n). - Benoit Cloitre, May 23 2004
A140130(a(n)) = 1 and for n > 1: A140129(a(n)) = A002262(n-2). - Reinhard Zumkeller, May 14 2008
a(n+1) = (2^(n - r(r-1)/2) - 1) 2^(r(r+1)/2 - n), where r=round(sqrt(2n)). - M. F. Hasler, May 06 2009
Start with A000225. If k is in the sequence, then so is 2k. - Ralf Stephan, Aug 16 2013
G.f.: (x^2/((2-x)*(1-x)))*(1 + Sum_{k>=0} x^((k^2+k)/2)*(1 + x*(2^k-1))). The sum is related to Jacobi theta functions. - Robert Israel, Feb 24 2015
A049502(a(n)) = 0. - Reinhard Zumkeller, Jun 17 2015
a(n) = a(n-1) + a(n-d)/a(d*(d+1)/2 + 2) if n > 1, d > 0, where d = A002262(n-2). - Yuchun Ji, May 11 2020
A277699(a(n)) = a(n)^2, A306441(a(n)) = a(n+1). - Antti Karttunen, Feb 15 2021 (the latter identity from A306441)
Sum_{n>=2} 1/a(n) = A211705. - Amiram Eldar, Feb 20 2022

Extensions

Definition changed by N. J. A. Sloane, Jan 05 2008

A224195 Ordered sequence of numbers of form (2^n - 1)*2^m + 1 where n >= 1, m >= 1.

Original entry on oeis.org

3, 5, 7, 9, 13, 15, 17, 25, 29, 31, 33, 49, 57, 61, 63, 65, 97, 113, 121, 125, 127, 129, 193, 225, 241, 249, 253, 255, 257, 385, 449, 481, 497, 505, 509, 511, 513, 769, 897, 961, 993, 1009, 1017, 1021, 1023, 1025, 1537, 1793, 1921, 1985, 2017, 2033, 2041, 2045, 2047
Offset: 1

Views

Author

Brad Clardy, Apr 01 2013

Keywords

Comments

The table is constructed so that row labels are 2^n - 1, and column labels are 2^n. The body of the table is the row*col + 1. A MAGMA program is provided that generates the numbers in a table format. The sequence is read along the antidiagonals starting from the top left corner.
All of these numbers have the following property:
let m be a member of A(n),
if a sequence B(n) = all i such that i XOR (m - 1) = i - (m - 1), then
the differences between successive members of B(n) is a repeating series
of 1's with the last difference in the pattern m. The number of ones in
the pattern is 2^j - 1, where j is the column index.
As an example consider A(4) which is 9,
the sequence B(n) where i XOR 8 = i - 8 starts as:
8, 9, 10, 11, 12, 13, 14, 15, 24... (A115419)
with successive differences of:
1, 1, 1, 1, 1, 1, 1, 9.
The main diagonal is the 6th cyclotomic polynomial evaluated at powers of two (A020515).
The formula for diagonals above the main diagonal
2^(2*n+1) - 2^(n + (a+1)/2) + 1 n>=(a+1)/2 a=odd number above diagonal
2^(2*n) - 2^(n + (b/2)) + 1 n>=(b/2)+1 b=even number above diagonal
The formulas for diagonals below the main diagonal
2^(2*n+1) - 2^(n + 1 -(a+1)/2) + 1 n>=(a+1)/2 a=odd number below diagonal
2^(2*n) - 2^(n - (b/2)) + 1 n>=(b/2)+1 b=even number below diagonal
Primes of this sequence are in A152449.

Examples

			Using the lexicographic ordering of A057555 the sequence is:
A(n) = Table(i,j) with (i,j)=(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)...
  +1  |    2    4     8    16    32     64    128    256     512    1024 ...
  ----|-----------------------------------------------------------------
  1   |    3    5     9    17    33     65    129    257     513    1025
  3   |    7   13    25    49    97    193    385    769    1537    3073
  7   |   15   29    57   113   225    449    897   1793    3585    7169
  15  |   31   61   121   241   481    961   1921   3841    7681   15361
  31  |   63  125   249   497   993   1985   3969   7937   15873   31745
  63  |  127  253   505  1009  2017   4033   8065  16129   32257   64513
  127 |  255  509  1017  2033  4065   8129  16257  32513   65025  130049
  255 |  511 1021  2041  4081  8161  16321  32641  65281  130561  261121
  511 | 1023 2045  4089  8177 16353  32705  65409 130817  261633  523265
  1023| 2047 4093  8185 16369 32737  65473 130945 261889  523777 1047553
  ...
		

Crossrefs

Cf. A081118, A152449 (primes), A057555 (lexicographic ordering), A115419 (example).
Rows: A000051(i=1), A181565(2), A083686(3), A195744(4), A206371(5), A196657(6).
Cols: A000225(j=1), A036563(2), A048490(3), A176303 (7 offset of 8).
Diagonals: A020515 (main), A092440, A060867 (above), A134169 (below).

Programs

  • Magma
    //program generates values in a table form
    for i:=1 to 10 do
        m:=2^i - 1;
        m,[ m*2^n +1 : n in [1..10]];
    end for;
    //program generates sequence in lexicographic ordering of A057555, read
    //along antidiagonals from top. Primes in the sequence are marked with *.
    for i:=2 to 18 do
        for j:=1 to i-1 do
           m:=2^j -1;
           k:=m*2^(i-j) + 1;
           if IsPrime(k) then k,"*";
              else k;
           end if;;
        end for;
    end for;
  • Mathematica
    Table[(2^j-1)*2^(i-j+1) + 1, {i, 10}, {j, i}] (* Paolo Xausa, Apr 02 2024 *)

Formula

a(n) = (2^(A057555(2*n-1)) - 1)*2^(A057555(2*n)) + 1 for n>=1. [corrected by Jason Yuen, Feb 22 2025]
a(n) = A081118(n)+2; a(n)=(2^i-1)*2^j+1, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Apr 04 2013

A234388 Primes of the form 2^k*(2^{phi(m)} - 1) + 1, where k and m are positive integers, and phi(.) is Euler's totient function.

Original entry on oeis.org

3, 5, 7, 13, 17, 31, 61, 97, 127, 193, 241, 257, 769, 1009, 1021, 2017, 4093, 7681, 8161, 8191, 12289, 15361, 16369, 16381, 32257, 61441, 64513, 65521, 65537, 131041, 131071, 523777, 524287, 786433, 1032193, 1048573, 4194301, 8257537, 8380417, 16515073, 16760833, 16776961, 16777153, 16777213, 67043329, 132120577, 134215681, 268369921, 536870401, 1073479681, 2013265921, 2113929217, 2146959361, 2147483137, 2147483647, 3221225473, 4293918721, 17175674881, 34359214081, 34359738337
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 25 2013

Keywords

Comments

Conjecture: (i) Any integer n > 1 can be written as k + m with k > 0 and m > 0 such that 2^k*(2^{phi(m)} - 1) + 1 is prime.
(ii) Each integer n > 2 can be written as k + m with k > 0 and m > 0 such that 2^k*(2^{phi(m)} - 1) - 1 is prime.
Part (i) of the conjecture implies that this sequence has infinitely many terms. See also A234399.
Note that the sequence contains all Fermat primes and Mersenne primes since 2^k + 1 = 2^k*(2^{phi(1)} - 1) + 1 and 2^p - 1 = 2*(2^{phi(p)} - 1) + 1, where k is a positive integer and p is a prime.

Examples

			a(1) = 3 since 2*(2^{phi(1)} - 1) + 1 = 3 is prime.
a(2) = 5 since 2^2*(2^{phi(1)} - 1) + 1 = 5 is prime.
a(3) = 7 since 2*(2^{phi(3)} - 1) + 1 = 7 is prime.
		

Crossrefs

Programs

  • Mathematica
    S:=Intersection[Union[Table[EulerPhi[k],{k,1,5000}]],Table[k,{k,1,500}]]
    n=0;Do[If[MemberQ[S,k]&&PrimeQ[2^m-2^(m-k)+1],n=n+1;Print[n," ",2^m-2^(m-k)+1]],{m,1,500},{k,1,m-1}]
Showing 1-3 of 3 results.