cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A214731 a(n) = n^3 - 2*n^2 - 1.

Original entry on oeis.org

-2, -1, 8, 31, 74, 143, 244, 383, 566, 799, 1088, 1439, 1858, 2351, 2924, 3583, 4334, 5183, 6136, 7199, 8378, 9679, 11108, 12671, 14374, 16223, 18224, 20383, 22706, 25199, 27868, 30719, 33758, 36991, 40424, 44063, 47914, 51983, 56276, 60799, 65558, 70559
Offset: 1

Views

Author

Marco Piazzalunga, Jul 27 2012

Keywords

Crossrefs

Cf. A080859, A085490, A144390 (first differences), A152619.
Similar sequences: A152015 (of the type m^3+2m^2-1), A081437 (m^3-2m^2+1).

Programs

Formula

From Bruno Berselli, Jul 27 2012: (Start)
G.f.: -x*(2-7*x-x^3)/(1-x)^4.
a(n) = A085490(n-1) + 2.
a(n) = A152619(n-2) - 1 for n>1.
a(n) - a(n-2) = A080859(n-2) - 1 for n>2. (End)
E.g.f.: 1 - (1-x)*(1+x)^2*exp(x). - G. C. Greubel, Dec 31 2023

Extensions

a(3) corrected by Charles R Greathouse IV, Jul 27 2012

A224220 a(n) = smallest number k with property that if the base-n expansion of k is reversed, the result is a nontrivial multiple of k.

Original entry on oeis.org

32, 75, 8, 245, 12, 21, 16, 1089, 15, 1859, 21, 39, 28, 4335, 24, 6137, 24, 57, 40, 11109, 33, 115, 39, 45, 52, 22707, 35, 27869, 40, 93, 64, 55, 51, 47915, 57, 111, 76, 65559, 48, 75809, 56, 129, 88, 99405, 69, 329, 60, 119, 65, 143259, 72, 265, 63, 95, 112, 198417, 87, 219539
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2013

Keywords

Comments

In other words, k divides (reversal of k in base n), and (k-reversed)/k > 1.
The numbers are written in base 10.
Theorem: The length of k (in base n) is 2 iff n>=5 and n+1 is composite, otherwise 4.

Examples

			The numbers a(n) for n = 3, ..., 11 written in base n are 1012, 1023, 13, 1045, 15, 25, 17, 1089, 14.
For example, 1012 (base 3) = 32 (base 10), and 2101 (base 3) = 64 (base 10) = 2*32.
		

References

  • N. J. A. Sloane, paper in preparation.
  • See A214927 for further references and links.

Crossrefs

Programs

  • Mathematica
    Table[k = 2; While[Nand[IntegerQ@ #, # != 1] &[FromDigits[#, n]/k] &@ Reverse@ IntegerDigits[k, n], k++]; k, {n, 3, 60}] (* Michael De Vlieger, Feb 26 2017 *)
  • PARI
    isok(k, n) = {my(rk = fromdigits(Vecrev(digits(k, n)), n)); !(rk % k) && (rk > k);}
    a(n) = {my(k = 1); while (!isok(k, n), k++); k;} \\ Michel Marcus, Feb 26 2017

Formula

If n=3 or n>3 and n+1 is prime, a(n) = (n^2-1)(n+1) (cf. A152619).
Showing 1-2 of 2 results.