A152743 6 times pentagonal numbers: a(n) = 3*n*(3*n-1).
0, 6, 30, 72, 132, 210, 306, 420, 552, 702, 870, 1056, 1260, 1482, 1722, 1980, 2256, 2550, 2862, 3192, 3540, 3906, 4290, 4692, 5112, 5550, 6006, 6480, 6972, 7482, 8010, 8556, 9120, 9702, 10302, 10920, 11556, 12210, 12882, 13572, 14280, 15006, 15750, 16512, 17292
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Ivan N. Ianakiev, Hexagon-like honeycomb built from regular congruent hexagons.
- Eric Weisstein's World of Mathematics, Windmill Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[ 3*n*(3*n-1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
-
Maple
A152743:=n->3*n*(3*n-1); seq(A152743(n), n=0..50); # Wesley Ivan Hurt, Jun 09 2014
-
Mathematica
Table[3n(3n-1),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,6,30},40] (* Harvey P. Dale, Jun 30 2011 *) CoefficientList[Series[-6x (2x+1)/(x-1)^3,{x,0,40}],x] (* Robert G. Wilson v, Mar 10 2015 *)
-
PARI
a(n)=3*n*(3*n-1) \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 9n^2 - 3n = A000326(n)*6.
a(n) = a(n-1) + 18*n - 12 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: -((6*x*(2*x+1))/(x-1)^3). - Harvey P. Dale, Jun 30 2011
E.g.f.: 3*x*(2+3*x)*exp(x). - G. C. Greubel, Sep 01 2018
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = (9*log(3) - sqrt(3)*Pi)/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi*sqrt(3) - 6*log(2))/9. (End)
Extensions
Converted reference to link by Omar E. Pol, Oct 07 2010
Comments