cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152744 7 times pentagonal numbers: a(n) = 7*n*(3*n-1)/2.

Original entry on oeis.org

0, 7, 35, 84, 154, 245, 357, 490, 644, 819, 1015, 1232, 1470, 1729, 2009, 2310, 2632, 2975, 3339, 3724, 4130, 4557, 5005, 5474, 5964, 6475, 7007, 7560, 8134, 8729, 9345, 9982, 10640, 11319, 12019, 12740, 13482, 14245, 15029, 15834, 16660, 17507, 18375, 19264
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Crossrefs

Similar sequences are listed in A316466.

Programs

  • Magma
    [7*n*(3*n-1)/2: n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    Table[7n (3n-1)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,7,35},50] (* Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(n)=7*n*(3*n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(n) = (21*n^2 - 7*n)/2 = A000326(n)*7.
a(n) = a(n-1) + 21*n - 14 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: 7*x*(1+2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, Aug 08 2013
a(n) = Sum_{i = 2..8} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
E.g.f.: 7*x*(2+3*x)/2. - G. C. Greubel, Sep 01 2018
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = (9*log(3) - sqrt(3)*Pi)/21.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(Pi*sqrt(3) - 6*log(2))/21. (End)